耐火材料 ›› 2021, Vol. 55 ›› Issue (4): 354-359.DOI: 10.3969/j.issn.1001-1935.2021.04.018
高靖红1)(), 史雨晨1), 于广锁1,2), 苏暐光1)(
), 李耀3), 张俊先3)
收稿日期:
2020-10-08
出版日期:
2021-08-15
发布日期:
2021-08-22
通讯作者:
苏暐光,男,1981年生,博士,副研究员。E-mail: weiguangsu@nxu.edu.cn作者简介:
高靖红:女,1996年生,硕士研究生。E-mail: gjh126998@163.com
基金资助:
Gao Jinghong1)(), Shi Yuchen1), Yu Guangsuo1,2), Su Weiguang1)(
), Li Yao3), Zhang Junxian3)
Received:
2020-10-08
Online:
2021-08-15
Published:
2021-08-22
Contact:
Su Weiguang
摘要:
氧化物基耐火材料因其具备优异的高温力学性能、良好的抗热震性以及抗熔渣侵蚀性等优点,被广泛应用于陶瓷制造、石油和能源等高温工业装备领域,但熔渣渗透和化学侵蚀是导致其损毁的主要因素。综述了熔渣对单相氧化物、多相氧化物和氧化物-碳复合耐火材料的侵蚀和渗透机制,并对侵蚀后耐火材料性能的变化规律和显微结构的变化特征进行了分析。展望了氧化物基耐火材料抗熔渣侵蚀的研究方向。
中图分类号:
高靖红, 史雨晨, 于广锁, 苏暐光, 李耀, 张俊先. 氧化物基耐火材料抗熔渣侵蚀研究进展[J]. 耐火材料, 2021, 55(4): 354-359.
Gao Jinghong, Shi Yuchen, Yu Guangsuo, Su Weiguang, Li Yao, Zhang Junxian. Research progress on slag corrosion resistance of oxide-based refractories[J]. Refractories, 2021, 55(4): 354-359.
[1] | GAGLIARDI M. Materials with market value: global ceramic and glass industry poised to reach MYM1 trillion[J]. American Ceramic Society Bulletin, 2017, 96(3):27-37. |
[2] | HEDRICK W L. Toward a “greener” future with advanced refractories[J]. American Ceramic Society Bulletin, 2013, 92(7):28-31. |
[3] | 柯昌明, 李有奇, 赵继增, 等. 不同煤熔渣对水煤浆加压气化炉用高铬砖的侵蚀[J]. 耐火材料, 2014, 48(5):321-326. |
[4] | LEE W E, ZHANG S. Melt corrosion of oxide and oxide-carbon refractories[J]. Metallurgical Reviews, 1999, 44(3):77-104. |
[5] |
TANG H Y, WU G H, WANG Y, et al. Comparative evaluation investigation of slag corrosion on Al2O3 and MgO-Al2O3 refractories via experiments and thermodynamic simulations[J]. Ceramics International, 2017, 43(18):16502-16511.
DOI URL |
[6] |
ZHANG W X, HUANG A, ZOU Y S, et al. Corrosion modeling of magnesia aggregates in contact with CaO-MgO-SiO2 slags[J]. Journal of the American Ceramic Society, 2020, 103(3):2128-2136.
DOI URL |
[7] |
WANG W L, XUE L W, ZHANG T S, et al. Thermodynamic corrosion behavior of Al2O3,ZrO2 and MgO refractories in contact with high basicity refining slag[J]. Ceramics International, 2019, 45(16):20664-20673.
DOI URL |
[8] |
SONG J Q, LIU Y J, LV X M, et al. Corrosion behavior of Al2O3 substrate by SiO2-MgO-FeO-CaO-Al2O3 slag[J]. Journal of Materials Research and Technology, 2020, 9(1):314-321.
DOI URL |
[9] | GUHA J P. Reaction chemistry in dissolution of polycrystalline alumina in lime-alumina-silica slag[J]. British Ceramic Transactions, 1997, 96(6):231-236. |
[10] |
TANG H Y, WU G H, WANG Y, et al. Comparative evaluation investigation of slag corrosion on Al2O3 and MgO-Al2O3 refractories via experiments and thermodynamic simulations[J]. Ceramics International, 2017, 43(18):16502-16511.
DOI URL |
[11] |
FU L P, GU H Z, HUANG A, et al. Slag resistance mechanism of lightweight microporous corundum aggregate[J]. Journal of the American Ceramic Society, 2015, 98(5):1658-1663.
DOI URL |
[12] | 马三宝, 鄢文, 林小丽, 等. 钢包渣对轻质方镁石-镁铝尖晶石耐火材料的侵蚀机理[J]. 硅酸盐学报, 2018, 46(3):443-448. |
[13] |
DAI Y X, LI J, YAN W, et al. Corrosion mechanism and protection of BOF refractory for high silicon hot metal steelmaking process[J]. Journal of Materials Research and Technology, 2020, 9(3):4292-4308.
DOI URL |
[14] | HUANG F, LIU C, MARUOKA N, et al. Dissolution behaviour of MgO based refractories in CaO-Al2O3-SiO2 slag[J]. Ironmaking & Steelmaking, 2015, 42(7):553-560. |
[15] | MATSUI T, HIRAGUSHI K, IKEMOTO T, et al. Corrosion of magnesia refractory brick by silicate slag[J]. Technical Association Refractories Japan, 2003, 23(1):11-14. |
[16] |
HAN J S, KANG J G, SHIN J H, et al. Influence of CaF2 in calcium aluminate-based slag on the degradation of magnesia refractory[J]. Ceramics International, 2018, 44(11):13197-13204.
DOI URL |
[17] |
MUKAI K, TAO Z, GOTO K, et al. In-situ observation of slag penetration into MgO refractory[J]. Scandinavian Journal of Metallurgy, 2002, 31(1):68-78.
DOI URL |
[18] |
ZHANG W X, HUANG A, ZOU Y S, et al. Corrosion modeling of magnesia aggregates in contact with CaO-MgO-SiO2 slags[J]. Journal of the American Ceramic Society, 2020, 103(3):2128-2136.
DOI URL |
[19] |
HIMPEL G, HERRMANN M, HÖHN S. Comparison of the high-temperature corrosion of aluminium nitride,alumina,magnesia and zirconia ceramics by coal ashes[J]. Ceramics International, 2015, 41(7):8288-8298.
DOI URL |
[20] |
CHEN G, LING Y Q, LI Q N, et al. Stability properties and structural characteristics of CaO-partially stabilized zirconia ceramics synthesized from fused ZrO2 by microwave sintering[J]. Ceramics International, 2020, 46(10):16842-16848.
DOI URL |
[21] | SONG L C, LIN Y, ZHONG Q F, et al. Corrosion resistance mechanism of MgO-ZrO2 brick in RH degasser slag[J]. Advanced Materials Research, 2012, 1583:2048-2052. |
[22] |
WANG C, YU J K, YUAN L. Reaction mechanism of MgO-ZrO2 refractory with CaO-SiO2-Al2O3-FetO slag[J]. Materials Research Innovations, 2014, 18(S2):S2.498- S2.503.
DOI URL |
[23] |
CHEN L G, MALFLIET A, VLEUGELS J, et al. Degradation mechanisms of alumina-chromia refractories for secondary copper smelter linings[J]. Corrosion Science, 2018, 136:409-417.
DOI URL |
[24] |
CAI B L, LI H X, ZHAO S X, et al. Corrosion of high chromia refractory materials by basic coal slag under simulated coal gasification atmosphere[J]. Ceramics International, 2018, 44(5):4592-4602.
DOI URL |
[25] |
CHEN D, HUANG A, GU H, et al. Corrosion of Al2O3-Cr2O3 refractory lining for high-temperature solid waste incinerator[J]. Ceramics International, 2015, 41(10):14748-14753.
DOI URL |
[26] |
ZHOU Z J, BO Y, ZHANG Y W, et al. Interactions of high-chromia refractory materials with infiltrating coal slag in the oxidizing atmosphere of a cyclone furnace[J]. Ceramics International, 2014, 40(3):3829-3839.
DOI URL |
[27] |
CHEN J F, XIAO J L, ZHANG Y, et al. Corrosion mechanism of Cr2O3-Al2O3-ZrO2 refractories in a coal-water slurry gasifier:A post-mortem analysis[J]. Corrosion Science, 2019, 163:108250.
DOI URL |
[28] |
CHO M K, HONG G G, LEE S K. Corrosion of spinel clinker by CaO-Al2O3-SiO2 ladle slag[J]. Journal of the European Ceramic Society, 2002, 22(11):1783-1790.
DOI URL |
[29] |
MARTINEZ G T A, LUZ A P, BRAULIO M A L, et al. Revisiting CA6 formation in cement-bonded alumina-spinel refractory castables[J]. Journal of the European Ceramic Society, 2017, 37(15):5023-5034.
DOI URL |
[30] | JUNMO J, KANG Y, PARK J H, et al. Corrosion-erosion behavior of MgAl2O4 spinel refractory in contact with high MnO slag[J]. Ceramics International, 2017, 17(43):15074-15079. |
[31] |
LUZ A P, MARTINEZ G T A, BRAULIO M A L, et al. Thermodynamic evaluation of spinel containing refractory castables corrosion by secondary metallurgy slag[J]. Ceramics International, 2011, 37(4):1191-1201.
DOI URL |
[32] | 曹雨后, 李红霞, 徐恩霞, 等. 煤熔渣对镁铝尖晶石质耐火材料的侵蚀机制[J]. 耐火材料, 2018, 52(1):19-22. |
[33] | 蒋坤, 王蝉娜, 屈天鹏, 等. 电场作用下镁碳耐火材料在氧化性渣中的侵蚀行为[J]. 材料科学与工程学报, 2019, 37(3):392-396. |
[34] | HUANG F, LIU C, MARUOKA N, et al. Dissolution behaviour of MgO based refractories in CaO-Al2O3-SiO2 slag[J]. Ironmaking & Steelmaking, 2015, 42(7):553-560. |
[35] |
WAGNER C, WENZL C, GREGUREK D, et al. Thermodynamic and experimental investigations of high-temperature refractory corrosion by molten slags[J]. Metallurgical and Materials Transactions B, 2017, 48(1):119-1319.
DOI URL |
[36] |
CHEN M, GAO S, XU L, et al. High temperature mechanical and corrosion resistance of Fe-containing MgO-C refractory in oxidizing atmosphere[J]. Ceramics International, 2019, 45(16):21023-21028.
DOI URL |
[37] | 李享成, 王堂玺, 姜晓, 等. 电磁场对MgO-C耐火材料抗熔渣侵蚀性的影响[J]. 硅酸盐学报, 2011, 39(3):452-457. |
[38] |
LIU Z Y, YUAN L, JIN E D, et al. Wetting,spreading and corrosion behavior of molten slag on dense MgO and MgO-C refractory[J]. Ceramics International, 2019, 45(1):718-724.
DOI URL |
[39] |
LIU Z Y, YU J K, YUE S J, et al. Effect of carbon content on the oxidation resistance and kinetics of MgO-C refractory with the addition of Al powder[J]. Ceramics International, 2020, 46(3):3091-3098.
DOI URL |
[40] |
KUMAR A, KHANNA R, SPINK J, et al. Corrosion behavior of Al2O3-C refractories with casting mould meniscus slags at 1 550 ℃[J]. Steel Research International, 2016, 87(1):46-56.
DOI URL |
[41] |
KUMAR A, KHANNA R, SPINK J, et al. Fundamental investigations on the corrosion of ZrO2-C refractories during interaction with a casting mould meniscus slag[J]. Steel Research International, 2014, 85(7):1185-1193.
DOI URL |
[42] |
ZUO H B, WANG C, LIU Y L. Dissolution behavior of a novel Al2O3-SiC-SiO2-C composite refractory in blast furnace slag[J]. Ceramics International, 2017, 43(9):7080-7087.
DOI URL |
[43] |
REN X M, MA B Y, LI S M, et al. Slag corrosion characteristics of MgO-based refractories under vacuum electromagnetic field[J]. Journal of the Australian Ceramic Society, 2019, 55(2):913-920.
DOI URL |
[44] | REN X M, MA B Y, LI S M, et al. Comparison study of slag corrosion resistance of MgO-MgAl2O4,MgO-CaO and MgO-C refractories under electromagnetic field[J]. Journal of Iron and Steel Research International, 2020, 30:1-8. |
[1] | 姚路炎, 韩兵强, 张锦化, 柯昌明. Ti-Si-Fe合金添加量对Si3N4结合SiC材料结构与性能的影响[J]. 耐火材料, 2024, 58(4): 277-283. |
[2] | 梁效诚, 冯雨, 刘中飞, 罗旭东, 黄敏, 吴锋. 预合成CaZrO3对镁锆质耐火材料性能的影响[J]. 耐火材料, 2024, 58(3): 213-217. |
[3] | 刘然, 刘晏廷, 高艳甲, 邓勇. 熔融还原炼铁工艺用耐火材料的研究进展[J]. 耐火材料, 2024, 58(3): 251-256. |
[4] | 陈天任, 王战民, 秦红彬, 梁成凯, 李旭治. 氢冶金工艺及氢基竖炉用耐火材料研究进展[J]. 耐火材料, 2024, 58(3): 263-269. |
[5] | 付琪琪, 钟立桦, 白文献, 淦永彤, 邓俊杰. 铜冶炼侧吹炉用镁铬质耐火材料损毁机制[J]. 耐火材料, 2024, 58(2): 148-154. |
[6] | 慕鑫, 贾毅, 刘春阳, 柴光伟, 余吴明, 杜传明, 马北越. 废旧高铝砖在LF精炼渣中的溶解行为研究[J]. 耐火材料, 2024, 58(1): 25-29. |
[7] | 徐国涛, 王志强, 秦世民, 刘黎, 张洪雷, 张彦文, 周旺枝. 新一代六铝酸钙质浇注料的研制与应用[J]. 耐火材料, 2024, 58(1): 53-56. |
[8] | 张巍, 王京阳. 莫来石复合耐火材料的应用进展[J]. 耐火材料, 2024, 58(1): 80-86. |
[9] | 李斌, 刘杰, 朱波, 郭玉涛, 任博, 封吉圣, 陈俊红. CA6质耐火材料在水泥回转窑过渡带的应用及损毁机制[J]. 耐火材料, 2023, 57(6): 479-483. |
[10] | 王明刚, 车连房, 史成龙, 袁宏伟, 刘永振. 钛白粉回转窑用耐火材料的配置及应用[J]. 耐火材料, 2023, 57(6): 504-507. |
[11] | 丁嘉辉, 张利新, 邓俊杰, 刘萍, 徐恩霞, 李素平. 危废处理焚烧炉内衬用耐火材料研究进展[J]. 耐火材料, 2023, 57(6): 538-541. |
[12] | 余吴明, 慕鑫, 杜传明, 马北越, 于景坤. 废旧耐火材料用作钢铁冶金熔剂的研究进展[J]. 耐火材料, 2023, 57(6): 542-545. |
[13] | 李红霞. 先进耐火材料创新助推国家战略实施[J]. 耐火材料, 2023, 57(5): 369-376. |
[14] | 王战民, 曹喜营, 吴吉光, 秦红彬, 李志刚, 余同暑, 柳军, 刘国齐, 段斌文, 王自强. 钢铁工业用耐火材料新技术进展[J]. 耐火材料, 2023, 57(5): 377-385. |
[15] | 韩艺辉, 曹喜营, 冯海霞, 王晖, 柳军, 潘元帅, 王建斌. 不同结合剂结合MgO-C耐火材料的性能研究[J]. 耐火材料, 2023, 57(5): 402-406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||