耐火材料 ›› 2021, Vol. 55 ›› Issue (6): 528-532.DOI: 10.3969/j.issn.1001-1935.2021.06.016
收稿日期:
2021-02-03
出版日期:
2021-12-15
发布日期:
2021-12-10
作者简介:
顾华志:男,1964年生,教授。E-mail: guhuazhi@wust.edu.cn
Gu Huazhi(), Han Cangjuan, Zhang Meijie, Huang Ao
Received:
2021-02-03
Online:
2021-12-15
Published:
2021-12-10
摘要:
高温相变蓄热材料在固-液相变时有液相产生而对容器造成腐蚀。综述了高温相变蓄热材料的封装研究进展及封装方法存在的问题,并对高温相变蓄热材料未来的应用进行了展望。
中图分类号:
顾华志, 韩藏娟, 张美杰, 黄奥. 高温相变蓄热材料的封装研究及应用展望[J]. 耐火材料, 2021, 55(6): 528-532.
Gu Huazhi, Han Cangjuan, Zhang Meijie, Huang Ao. Package research and application of high-temperature phase change heat storage materials[J]. Refractories, 2021, 55(6): 528-532.
[1] |
BAETENS R, JELLE B P, GUSTAVSEN A. Phase change materials and products for building applications:A state-of-the-art review and future research opportunities[J]. Energy Buildings, 2010, 42(9):1361-1368.
DOI URL |
[2] |
BRUNO C, NOEL L. High temperature latent heat thermal energy storage:Phase change materials,design considerations and performance enhancement techniques[J]. Renewable Sustainable Energy Rev, 2013, 27:724-737.
DOI URL |
[3] | 陈肇友. 化学热力学与耐火材料[M]. 北京: 冶金工业出版社, 2005: 4. |
[4] |
KONUKLU Y, PAKSOY H O, UNAL M. Nanoencapsulation of n-alkanes with poly(styrene-co-ethylacrylate) shells for thermal energy storage[J]. Appl Energy, 2015, 150:335-340.
DOI URL |
[5] |
XU B, LI P, CHAN C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants:A review to recent developments[J]. Appl Energy, 2015, 160:286-307.
DOI URL |
[6] |
SU W, DARKWA J, KOKOGIANNAKIS G. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable Sustainable Energy Rev, 2015, 48 373-391.
DOI URL |
[7] | 叶锋, 曲江兰, 仲俊瑜, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6):1231-1241. |
[8] | 袁炜东. 国内外太阳能光热发电发展现状及前景[J]. 电力与能源, 2015, 36(4):487-490. |
[9] |
EVANS W, PRASHER R, FISH J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids[J]. Int J Heat Mass Transfer, 2008, 51(5-6):1431-1438.
DOI URL |
[10] |
TIAN H, WANG W, DING J, et al. Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites[J]. Appl Energy, 2015, 148:87-92.
DOI URL |
[11] |
SARANPRABHU M K, RAJAN K S. Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage[J]. Renewable Energy, 2019, 141:451-459.
DOI URL |
[12] |
TIAN H Q, DU L C, WEI X L, et al. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage[J]. Appl Energy, 2017, 204:525-530.
DOI URL |
[13] |
REN Y, XU C, YUAN M, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage[J]. Energy Convers Manage, 2018, 163:50-58.
DOI URL |
[14] | LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. Int J Heat Mass Transfer, 2017, 115:148-157. |
[15] |
SAFARI A, SAIDUR R, SULAIMAN F A, et al. A review on supercooling of phase change materials in thermal energy storage systems[J]. Renewable Sustainable Energy Rev, 2017, 70:905-919.
DOI URL |
[16] |
LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable Sustainable Energy Rev, 2012, 16(4):2118-2132.
DOI URL |
[17] |
LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Appl Energy, 2019, 255:113806.
DOI URL |
[18] |
WAN Z J, WEI J J, MUMTAZ A Q, et al. Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system[J]. Appl Therm Eng, 2020, 167:114775.
DOI URL |
[19] |
FARKAS D, BIRCHENALL C E. New eutectic alloys and their heats of transformation[J]. Metallurgical Transactions A, 1985, 16(3):323-328.
DOI URL |
[20] |
BIRCHENALL C E, RIECHMAN F A. Heat storage in eutectic alloys[J]. Metallurgical Transactions A, 1980, 11(8):1415-1420.
DOI URL |
[21] | 孙建强, 张仁元. 金属相变储能与技术的研究与发展[J]. 材料导报, 2005, 19(8):99-101. |
[22] | 冼焯斌, 李风, 张仁元. 铝硅储能合金高温抗氧化性能及热物性能的研究[J]. 热加工工艺, 2012, 41(2):75-77. |
[23] | 李辉鹏, 张仁元, 陈枭, 等. 盛装储热铝硅共晶合金的容器材料研究[J]. 广东工业大学学报, 2009, 26(2):36-39. |
[24] | 邹向, 仝兆丰. 铝硅合金用作相变储热材料的研究[J]. 新能源, 1996, 18(8):1-3. |
[25] | 程晓敏, 陶冰梅, 万清舟, 等. Mg-Cu-Zn相变储热材料充放热特性研究[J]. 武汉理工大学学报(信息与管理工程版), 2014, 36(3):332-336. |
[26] | 董静. 基于Al-Si-Cu-Mg-Zn合金的高温储热材料优化设计与储热性能研究[D]. 武汉:武汉理工大学, 2009. |
[27] | 宫殿清. 基于Al-Si-Cu-Mg-Zn合金的高温相变储热材料制备与储热性能研究[D]. 武汉:武汉理工大学, 2008. |
[28] | 张适阔. 铝合金高温储热材料相变储热机理研究[D]. 武汉:武汉理工大学, 2009. |
[29] | 李爱菊, 王毅. 无机盐/陶瓷基复合蓄热材料高温稳定性的研究[J]. 材料导报, 2011, 25(12):78-81. |
[30] |
NOMURA T, ZHU C Y, SHENG N, et al. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage[J]. Sci Rep, 2015, 5:9117.
DOI URL |
[31] |
NOMURA T, SHENG N, ZHU C Y, et al. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation[J]. Appl Energy, 2017, 188:9-18.
DOI URL |
[32] |
NOMURA T, YOOLERD J, SHENG N, et al. Microencapsulation of eutectic and hyper-eutectic Al-Si alloy as phase change materials for high-temperature thermal energy storage[J]. Sol Energy Mater Sol Cells, 2018, 187:255-262.
DOI URL |
[33] | SHENG N, ZHU C Y, SAITO G, et al. Development of a microencapsulated Al-Si phase change material with high-temperature thermal stability and durability over 3000 cycles[J]. J Mater Chem A, 2018, 37:18143-18153. |
[34] |
SHENG N, ZHU C Y, SAKAI H, et al. Synjournal of Al-25wt%Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage[J]. Sol Energy Mater Sol Cells, 2019, 191:141-147.
DOI URL |
[35] |
HAN C J, GU H Z, ZHANG M J, et al. Preparation and formation mechanism of Al-Si/Al2O3 core-shell structured particles fabricated via steam corrosion[J]. Ceram Int, 2019, 45(11):13809-13817.
DOI URL |
[36] |
HAN C J, GU H Z, ZHANG M J, et al. Thermal properties of Al-Si/Al2O3 core-shell particles prepared by using steam hydration method[J]. J Alloys Comp, 2020, 817:152801.
DOI URL |
[37] |
HE F, SONG G P, HE X D, et al. Structural and phase change characteristics of inorganic microencapsulated core/shell Al-Si/Al2O3,micro-particles during thermal cycling[J]. Ceram Int, 2015, 41(9):10689-10696.
DOI URL |
[38] |
HE F, SUI C, HE X D, et al. Comparison of structure and phase change characteristic of microencapsulated core/shell Al-Si alloy microparticles synthesized by two methods[J]. J Sol-Gel Sci Technol, 2015, 76:1-10.
DOI URL |
[39] |
ZHANG H F, SHIN D, SANTHANAGOPALAN S. Microencapsulated binary carbonate salt mixture in silica shell with enhanced effective heat capacity for high temperature latent heat storage[J]. Renewable Energy, 2019, 134:1156-1162.
DOI URL |
[40] |
ZHANG H F, BALRAM A, TIZNOBAIK H, et al. Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage[J]. Appl Therm Eng, 2018, 136:268-274.
DOI URL |
[41] | 李宁宁, 李孔斋, 魏永刚, 等. Al@AlN-Al2O3高温复合相变蓄热材料的制备与性能研究[J]. 太阳能学报, 2016, 37(11):2875-2882. |
[42] |
LI K Z, GU Z H, ZHU X, et al. Facile synjournal of Al@Al2O3 microcapsule for high-temperature thermal energy storage[J]. ACS Sustainable Chem Eng, 2018, 6(10):13226.
DOI URL |
[43] |
HAN C J, GU H Z, ZHANG M J, et al. Al-Si@Al2O3@mullite microcapsules for thermal energy storage:Preparation and thermal properties[J]. Sol Energy Mater Sol Cells, 2020, 217:110697.
DOI URL |
[44] |
GOKON N, INUTA S, YAMASHITA S, et al. Double-walled reformer tubes using high-temperature thermal storage of molten-salt/MgO composite for solar cavity-type reformer[J]. Int J Hydrogen Energy, 2009, 34(17):7143-7154.
DOI URL |
[45] |
FUKAHORI R, NOMURA T, ZHU C Y, et al. Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage[J]. App energy, 2016, 170:324-328.
DOI URL |
[46] | 刘强. 包裹相变材料的蓄热氧化铝基复相蜂窝陶瓷的研究[D]. 武汉:武汉理工大学, 2010. |
[47] |
ZHANG G C, LI J Q, CHEN Y F, et al. Encapsulation of copper-based phase change materials for high temperature thermal energy storage[J]. Sol Energy Mater Sol Cells, 2014, 128:131-137.
DOI URL |
[48] |
ZOU Q, JIE J, SHEN Z, et al. A new concept of Al-Si alloy with core-shell structure as phase change materials for thermal energy storage[J]. Mater Lett, 2019, 237(2):193-196.
DOI URL |
[49] | STEINER D, GROLL M, WIERSE M. Development and investigation of thermal energy storage systems for the medium temperature range[C]//Proceedings of the 30.intersociety energy conversion engineering conference,Orlando,US, 1995: 658. |
[50] |
LIU R P, ZHANG F, SU W M, et al. Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage[J]. Sol Energy Mater Sol Cells, 2015, 134 :268-274.
DOI URL |
[51] | 李爱菊, 王毅, 张仁元. 工业窑炉用陶瓷基定形储能材料的研究[J]. 硅酸盐通报, 2007, 26(3):547-551. |
[52] |
XU G Z, LENG G H, YANG C Y, et al. Sodium nitrate-diatomite composite materials for thermal energy storage[J]. Sol Energy, 2017, 146:494-502.
DOI URL |
[53] | 许二超, 王周福, 王玺堂, 等. 原位反应烧结制备熔盐/尖晶石复合高温相变储能材料的研究[J]. 武汉科技大学学报(自然科学版), 2010, 33(3):273-276. |
[54] | 焦勇. Al-Si/Al2O3高温复合相变蓄热材料的制备与性能研究[D]. 西安:西安建筑科技大学, 2012. |
[55] | 王建宏. 粉煤灰基高温复合相变蓄热材料的制备与性能研究[D]. 西安:西安建筑科技大学, 2013. |
[56] |
HAN C J, GU H Z, ZHANG M J, et al. Preparation and characterization of a heat storage ceramic with Al-12wt%Si as the phase change material[J]. Ceram Int, 2020, 46(18):28042-28052.
DOI URL |
[57] | 华建社, 王建宏, 焦勇, 等. 定形高温复合相变蓄热材料的研究现状及应用[J]. 热加工工艺, 2012, 41(24):109-112. |
[1] | 姚路炎, 韩兵强, 张锦化, 柯昌明. Ti-Si-Fe合金添加量对Si3N4结合SiC材料结构与性能的影响[J]. 耐火材料, 2024, 58(4): 277-283. |
[2] | 昝文宇, 马北越, 陈广鑫, 曹长坤, 李孟强. 利用低压电瓷废料和二次铝灰制备莫来石陶瓷基多孔骨料[J]. 耐火材料, 2024, 58(4): 302-306. |
[3] | 邓江, 刘学新, 李文, 张子翼, 员文杰. 氧化铝粒径和氧化锆粉外加量对氧化铝造粒粉性能的影响[J]. 耐火材料, 2024, 58(4): 307-313. |
[4] | 李文凤, 申天姿, 郭会师, 曹金金, 康晓旭, 石凯, 康晓阳. 多羟基糖类结合剂对Al2O3-SiC-C质无水炮泥性能的影响[J]. 耐火材料, 2024, 58(4): 314-318. |
[5] | 安佳瑞, 张锐, 范冰冰, 王刚, 杜鹏辉. Sm2O3加入量和热处理温度对CA6-MA材料性能的影响[J]. 耐火材料, 2024, 58(4): 319-322. |
[6] | 李莹, 汪涤, 赵莉, 尹艺程, 贾全利. 石墨类型对Al2O3-MgO浇注料性能的影响[J]. 耐火材料, 2024, 58(4): 323-328. |
[7] | 凌厦厦, 相宇博, 郑翰, 吴吉光. 酚醛/环氧树脂凝胶注模成型制备反应烧结碳化硅[J]. 耐火材料, 2024, 58(4): 329-333. |
[8] | 李飞, 周辉, 杨枝超, 唐中队, 王正芳, 刘威. 不同成型方式精炼钢包包壁工作衬的蚀损机制研究[J]. 耐火材料, 2024, 58(4): 344-348. |
[9] | 李坤鹏, 闫双志, 张涛, 石鹏坤, 冯志源, 范沐旭, 王晗, 刘鹏程. 回转窑炉渣对刚玉-莫来石砖的侵蚀研究[J]. 耐火材料, 2024, 58(4): 349-353. |
[10] | 徐晓莹, 曹海洁, 魏立超, 马旭峰. 能量色散X射线荧光光谱仪在镁砂成分测定中的应用[J]. 耐火材料, 2024, 58(4): 354-356. |
[11] | 游杰刚, 赵鑫, 钱国华, 张小芳, 张国栋, 马北越. 辽南地区电熔镁砂的发展现状[J]. 耐火材料, 2024, 58(4): 357-361. |
[12] | 谭栖桐, 赵惠忠, 余俊, 张寒, 谈利强. 固废资源合成堇青石工艺及其性能研究[J]. 耐火材料, 2024, 58(3): 185-189. |
[13] | 王昕悦, 许晴, 朱欣欣, 周瑞琪, 段红娟, 张海军, 李少平. 固相反应合成MgAl2O4多孔纤维的研究[J]. 耐火材料, 2024, 58(3): 190-194. |
[14] | 程旭, 邓承继, 董博, 邹起良, 丁军, 王周福, 朱万政, 肖语嫣, 祝洪喜, 余超. Y2O3对氧化物结合Ti(C,N)复合材料性能的影响[J]. 耐火材料, 2024, 58(3): 195-198. |
[15] | 刘中飞, 吴锋, 李心慰, 梁效诚, 罗旭东, 钱国华. CaO对MgAl2O4材料和ZrO2-MgAl2O4材料侵蚀机制研究[J]. 耐火材料, 2024, 58(3): 199-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||