[1] 国家原子能机构.中国首座高水平放射性废液玻璃固化设施正式投运[EB/OL].(2021-09-11)[2024-06-25].https://www.caea.gov.cn/n6760338/n6760342/c6831032/content.html. [2] 张威,董海龙,阮苠秩.陶瓷电熔炉在动力堆高放废液玻璃固化中适用性分析[J].辐射防护,2019,39(4):322-330. [3] 凡思军,钱敏,薛天锋,等.Joule加热陶瓷炉玻璃固化技术研究进展[J].硅酸盐学报,2021,49(12):2736-2750. [4] 李玉松,张生栋,鲜亮,等.CIAE高放废液固化技术研发进展[J].原子能科学技术,2020,54(S1):126-136. [5] 徐凯.核废料玻璃固化国际研究进展[J].中国材料进展,2016,35(7):481-488+517. [6] SOKOLOV V A,GASPARYAN M D,REMIZOV M B, et al.Corrosion resistance of refractories in melts of glasses used to immobilize radioactive wastes[J].Refractories and Industrial Ceramics,2016,57(2):160-163. [7] BINGHAM P A,CONNELLY A J,HYATT N C,et al.Corrosion of glass contact refractories for the vitrification of radioactive wastes:A review[J].International Materials Reviews,2011,56(4):226-242. [8] SELKREGG K.Fusion cast refractories:Roles of containment[J].American ceramic society bulletin,2018,97(2):21-28. [9] SOKOLOV V A,GASPARYAN M D.Fusion-cast chromium-bearing refractories—The most durable materials in aggressive melts[J].Refractories and Industrial Ceramics,2011,52(2):146-150. [10] XING S B,LIN Y J,MOHR R K,et al. Corrosion resistance of ceramic refractories to simulated waste glasses at high temperatures[J].MRS Online Proceedings Library,1995,412(1):181-188. [11] IVERSON D C,BICKFORD D F.Evaluation of materials performance in a large-scale glass melter after two years of vitrifying simulated SRP defense waste[J].MRS Online Proceedings Library,1984,44(1):839-845. [12] SMITH-GRAY N J,BUSSEY J M,MCCLOY J S.Microstructural examination of interactions between chromia-based refractory and nuclear glass in a melter[J].Journal of the American Ceramic Society,2022,105(12):7760-7769. [13] JANTZEN C M,IMRICH K J,BROWN K G,et al.High chrome refractory characterization:Part Ⅰ.Impact of melt reduction/oxidation on the corrosion mechanism[J].International Journal of Applied Glass Science,2015,6(2):137-157. [14] XU X Y,SAINI R,AKDOGAN E K,et al.Corrosion behavior of Monofrax K-3 refractory in borosilicate-based model low activity waste glass melts[J].Journal of the American Ceramic Society,2023,106(6):3375-3395. [15] SMITH-GRAY N J,SARGIN I,BECKMAN S,et al.Machine learning to predict refractory corrosion during nuclear waste vitrification[J].MRS Advances,2021,6:131-137. [16] 魏瀚,毛利民,王俊涛,等.熔铸锆铬刚玉耐火材料抗硼硅酸盐熔体的侵蚀行为[J].硅酸盐学报,2023,51(12):3196-3203. [17] 中钢洛耐科技股份有限公司.中钢洛耐顺利通过“某课题-电熔铸铬刚玉耐火砖和锆刚玉耐火砖研制外委项目”《耐火材料研制报告》和《耐火砖试制报告》验收[EB/OL].(2023-07-08)[2024-06-25].https://www.lyrg.com.cn/news/249.html. [18] CHEN L G,MALFLIET A,JONES P T,et al.Comparison of the chemical corrosion resistance of magnesia-based refractories by stainless steelmaking slags under vacuum conditions[J].Ceramics International 2016,42(1):743-751. [19] ZHANG H R,WANG M Q,JIA Q L,et al.Corrosion mechanism of reactive MgO-bonded Cr2O3-bearing castables in CaO-Al2O3-Fe2O3-SiO2-based steel-making slag[J].Journal of the American Ceramic Society,2024,107(2):1232-1248. [20] JANTZEN C M,IMRICH K J,PICKETT J B.High chrome refractory characterization:Part Ⅱ.Accumulation of spinel corrosion deposits in radioactive waste glass melters[J].International Journal of Applied Glass Science,2015,6(2):158-171. |