耐火材料 ›› 2025, Vol. 59 ›› Issue (4): 307-310.DOI: 10.3969/j.issn.1001-1935.2025.04.006

• 研究开发 • 上一篇    下一篇

Al2O3-Cr2O3固溶体的晶体结构优化和杨氏模量的高通量智能计算

李传浩1), 曹喜营1), 杨小渝2,3), 冯海霞1)   

  1. 1)中钢集团洛阳耐火材料研究院有限公司 先进耐火材料全国重点实验室 河南洛阳 471039
    2)中国科学院计算机网络信息中心 北京 1000833
    3)中国科学院大学 北京 100049
  • 收稿日期:2024-12-16 出版日期:2025-08-15 发布日期:2025-08-18
  • 通讯作者: 曹喜营,男,1973年生,博士,正高级工程师。E-mail:caoxy@lirrc.com
  • 作者简介:李传洁:男,1998年生,硕士研究生。E-mail: 564806335@qq.com
  • 基金资助:
    先进耐火材料全国重点实验室2024年科研项目(202407)。

Crystal structure optimization and high-throughput intelligent calculation of Young’s modulus of Al2O3-Cr2O3 solid solution

Li Chuanhao, Cao Xiying, Yang Xiaoyu, Feng Haixia   

  1. First author's address:State Key Laboratory of Advanced Refractories,Sinosteel Luoyang Institute of Refractories Research Co.,Ltd.,Luoyang 471039,Henan,China
  • Received:2024-12-16 Online:2025-08-15 Published:2025-08-18

摘要: 为探索高通量智能计算在耐火材料领域中的应用,针对铬刚玉耐火原料,选取Al2O3-Cr2O3固溶体体系作为研究对象,采用高通量智能计算和机器学习方法,探讨了Cr2O3取代浓度对固溶体晶格常数和杨氏模量的影响。计算结果表明,随Cr2O3取代浓度的增加,Al2O3-Cr2O3固溶体杨氏模量整体呈下降趋势,但在70%~90%(x)的高Cr2O3取代浓度下,固溶体的杨氏模量略低于纯Cr2O3的。此外,还直接计算了Al2O3-5%(x)Cr2O3固溶体的杨氏模量,并将其与机器学习模型预测值进行了对比,发现二者相差不大,说明了通过高通量智能计算和数据挖掘技术的结合来得到材料性能和组分的映射关系的可行性。

关键词: Al2O3-Cr2O3固溶体, 高通量智能计算, 耐火原料, 杨氏模量

Abstract: To explore the application of high-throughput intelligent calculation in the field of refractory materials,targeting chrome corundum refractory raw materials,the Al2O3-Cr2O3 solid solution system as the research object was selected.By using high-throughput intelligent computing and machine learning methods,the effects of the Cr2O3 substitution concentration on the lattice constants and Young’s modulus of Al2O3-Cr2O3 solid solutions were investigated.The calculation results show that with the increase of the Cr2O3 substitution concentration,the Young’s modulus of Al2O3-Cr2O3 solid solutions shows an overall decreasing trend;however,at high Cr2O3 substitution concentrations of 70%-90%(x),the Young’s modulus of the solid solution is slightly lower than that of pure Cr2O3.In addition,the Young’s modulus of Al2O3-5%(x)Cr2O3 solid solution is directly calculated and compared with the predicted value of the machine learning model,and it was found that the two are not much different,which indicates the feasibility of obtaining the mapping relationship between material properties and components through the combination of high-throughput intelligent computing and data mining technology.

Key words: Al2O3-Cr2O3 solid solution, high-throughput intelligent computing, refractory raw materials, Young’s modulus

中图分类号: