耐火材料 ›› 2021, Vol. 55 ›› Issue (4): 338-347.DOI: 10.3969/j.issn.1001-1935.2021.04.016
收稿日期:
2020-09-05
出版日期:
2021-08-15
发布日期:
2021-08-22
通讯作者:
张海军,男,1970年生,教授。E-mail: zhanghaijun@wust.edu.cn作者简介:
董骏峰:男,1996年生,硕士研究生。E-mail: 1580997607@qq.com
基金资助:
Dong Junfeng(), Wang Honghong, Li Xiaojian, Zhang Haijun(
)
Received:
2020-09-05
Online:
2021-08-15
Published:
2021-08-22
Contact:
Zhang Haijun
摘要:
BN纳米管(BNNTs)是一种与碳纳米管相似的管状结构材料,因其优异的力学强度、高的热导率、良好的热稳定性及化学稳定性、超疏水性及优异的电绝缘性等性能,在冶金、化工、环境、催化及生物医学等领域具有广泛的应用前景。简要综述了电弧放电法、化学气相沉积法与球磨氮化反应法制备BNNTs的优缺点及影响因素,并对今后BNNTs的研究重点和方向进行了展望。
中图分类号:
董骏峰, 王洪红, 李孝建, 张海军. BN纳米管制备研究进展[J]. 耐火材料, 2021, 55(4): 338-347.
Dong Junfeng, Wang Honghong, Li Xiaojian, Zhang Haijun. Research progress on preparation of BN nanotubes[J]. Refractories, 2021, 55(4): 338-347.
制备方法 | 硼源 | 催化剂 | 反应气氛 | 优点 | 缺点 | 文献 |
---|---|---|---|---|---|---|
电弧放电法 | h-BN | 无 | He | 可连续运行;不需要使用有机溶剂或危险性试剂 | 对仪器的要求较高且成本较高;产物的纯度较低且产量较低 | [ |
B | Co及Ni | N2 | [ | |||
HfB2 | 无 | N2 | [ | |||
h-BN及B | Ni | He-N2 | [ | |||
h-BN | Ni及Y | Ar-N2 | [ | |||
CVD法 | B2O3 | Mg | NH3 | 低成本且易于控制;产物的纯度较高且质量较高 | 需要使用化学试剂,易对环境造成污染;产物的产量较低 | [ |
B | α-Fe2O3 | N2-NH3 | [ | |||
B | FeS及Fe2O3 | N2-NH3 | [ | |||
B | MgO及Fe2O3 | NH3 | [ | |||
H3BO3 | Fe(NO3)3·9H2O | NH3 | [ | |||
B | MgO及γ-Fe2O3 | NH3 | [ | |||
B | MgO及Fe2O3 | NH3 | [ | |||
MgB2 | MgB2 | NH3 | [ | |||
B2O3 | Li3N | NH3 | [ | |||
B | Co(NO3)2·6H2O | NH3 | [ | |||
B2O3和B | 不锈钢基板 | NH3 | [ | |||
球磨氮化反应法 | B | 无 | N2 | 工艺简单且成本低;产物的产量较高 | 需要使用化学试剂,易对环境造成污染;工艺耗时长;产物的纯度较低 | [ |
B | Li2O | NH3 | [ | |||
B | FeO及MgO | N2 | [ | |||
B | Fe | N2 | [ | |||
B、B2O3及MgB2 | MgB2 | NH3 | [ | |||
B | 不锈钢片 | N2 | [ | |||
B | Fe3O4 | N2 | [ | |||
B | Fe(NO3)3 | N2 | [ |
表1 BNNTs制备方法优缺点对比
制备方法 | 硼源 | 催化剂 | 反应气氛 | 优点 | 缺点 | 文献 |
---|---|---|---|---|---|---|
电弧放电法 | h-BN | 无 | He | 可连续运行;不需要使用有机溶剂或危险性试剂 | 对仪器的要求较高且成本较高;产物的纯度较低且产量较低 | [ |
B | Co及Ni | N2 | [ | |||
HfB2 | 无 | N2 | [ | |||
h-BN及B | Ni | He-N2 | [ | |||
h-BN | Ni及Y | Ar-N2 | [ | |||
CVD法 | B2O3 | Mg | NH3 | 低成本且易于控制;产物的纯度较高且质量较高 | 需要使用化学试剂,易对环境造成污染;产物的产量较低 | [ |
B | α-Fe2O3 | N2-NH3 | [ | |||
B | FeS及Fe2O3 | N2-NH3 | [ | |||
B | MgO及Fe2O3 | NH3 | [ | |||
H3BO3 | Fe(NO3)3·9H2O | NH3 | [ | |||
B | MgO及γ-Fe2O3 | NH3 | [ | |||
B | MgO及Fe2O3 | NH3 | [ | |||
MgB2 | MgB2 | NH3 | [ | |||
B2O3 | Li3N | NH3 | [ | |||
B | Co(NO3)2·6H2O | NH3 | [ | |||
B2O3和B | 不锈钢基板 | NH3 | [ | |||
球磨氮化反应法 | B | 无 | N2 | 工艺简单且成本低;产物的产量较高 | 需要使用化学试剂,易对环境造成污染;工艺耗时长;产物的纯度较低 | [ |
B | Li2O | NH3 | [ | |||
B | FeO及MgO | N2 | [ | |||
B | Fe | N2 | [ | |||
B、B2O3及MgB2 | MgB2 | NH3 | [ | |||
B | 不锈钢片 | N2 | [ | |||
B | Fe3O4 | N2 | [ | |||
B | Fe(NO3)3 | N2 | [ |
[1] |
CHEN Y, WANG X, YU C, et al. Low temperature synjournal via molten-salt method of r-BN nanoflakes,and their properties[J]. Scientific Reports, 2019, 9(1):16338.
DOI URL |
[2] |
SILVA W M, RIBEIRO H F, FERREIRA T H, et al. Synjournal of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique[J]. Physica E, 2017, 89:177-182.
DOI URL |
[3] |
ÖRNEK M, WANG K, XIANG S, et al. Molten salt synjournal of highly ordered and nanostructured hexagonal boron nitride[J]. Diamond and Related Materials, 2019, 93:179-186.
DOI URL |
[4] |
YE L F, ZHAO L, LIANG F, et al. Facile synjournal of hexagonal boron nitride nanoplates via molten-salt-mediated magnesiothermic reduction[J]. Ceramics International, 2015, 41(10):14941-14948.
DOI URL |
[5] |
E S F, YE X Y, ZHU Z Z, et al. Tuning the structures of boron nitride nanosheets by template synjournal and their application as lubrication additives in water[J]. Applied Surface Science, 2019, 479:119-127.
DOI URL |
[6] |
SHEN T T, LIU S, YAN W J, et al. Highly efficient preparation of hexagonal boron nitride by direct microwave heating for dye removal[J]. Journal of Materials Science, 2019, 54(12):8852-8859.
DOI URL |
[7] | HAO W, MARICHY C, BRIOUDE A. Promising properties of ALD boron nitride nanotube mats for water purification[J]. Environmental Science, 2017, 4(12):2311-2320. |
[8] |
XIONG J, DI J, ZHU W S, et al. Hexagonal boron nitride adsorbent:Synjournal,performance tailoring and applications[J]. Journal of Energy Chemistry, 2020, 40(1):99-111.
DOI URL |
[9] |
MORADI R, KARIMI-SABET J, SHARIATY-NIASSAR M, et al. Synjournal and preparation of mono-layer h-BN nanopowders by using a combination of CVD method with isopropanol-assisted exfoliation process[J]. Powder Metallurgy and Metal Ceramics, 2017, 55(9-10):530-540.
DOI URL |
[10] |
WANG M Q, JIA L T, LI A J, et al. Preparation of boron nitride coating from BCl3-NH3-H2-N2 precursor by chemical vapor deposition[J]. Journal of Inorganic Materials, 2018, 33(11):1179-1185.
DOI URL |
[11] |
ANDRIANI Y, SONG J, LIM P C, et al. Green and efficient production of boron nitride nanosheets via oxygen doping-facilitated liquid exfoliation[J]. Ceramics International, 2019, 45(4):4909-4917.
DOI URL |
[12] |
CHAO Y H, LIU M, PANG J Y, et al. Gas-assisted exfoliation of boron nitride nanosheets enhancing adsorption performance[J]. Ceramics International, 2019, 45(15):18838-18843.
DOI URL |
[13] | ZHAO H R, DING J H, SHAO Z Z, et al. High-quality boron nitride nanosheets and their bioinspired thermally conductive papers[J]. ACS Applied Materials & Interfaces, 2019, 11(40):37247-37255. |
[14] |
LIU Z W, ZHAO K, LUO J, et al. Highly efficient synjournal of hexagonal boron nitride short fibers with adsorption selectivity[J]. Ceramics International, 2019, 45(17):22394-22401.
DOI URL |
[15] |
WANG L J, HAN D B, LUO J, et al. Highly efficient growth of boron nitride nanotubes and the thermal cnductivity of their polymer composites[J]. The Journal of Physical Chemistry C, 2018, 122(3):1867-1873.
DOI URL |
[16] |
KIM J H, PHAM T V, HWANG J H, et al. Boron nitride nanotubes:synjournal and applications[J]. Nano Convergence, 2018, 5(1):1-17.
DOI URL |
[17] |
LEE C H, BHANDARI S, TIWARI B, et al. Boron nitride nanotubes:recent advances in their synjournal,functionalization,and applications[J]. Molecules, 2016, 21(7):922.
DOI URL |
[18] |
RUBIO A, CORKILL J L, COHEN M L. Theory of graphitic boron nitride nanotubes[J]. Physical Review B, 1994, 49(7):5081-5084.
DOI URL |
[19] |
CHOPRA N G, LUYKEN R J, CHERREY K, et al. Boron nitride nanotubes[J]. Science, 1995, 269(5226):966-967.
DOI URL |
[20] |
AMIN M S, ATWATER B, PIKE R D, et al. High-purity boron nitride nanotubes via high-yield hydrocarbon solvent processing[J]. Chemistry of Materials, 2019, 31(20):8351-8357.
DOI URL |
[21] | TAO J X, XU G M, SUN Y Z. Elastic properties of boron-nitride nanotubes through an atomic simulation method[J]. Mathematical Problems in Engineering, 2015, 2015:1-5. |
[22] |
WANG H, WANG W M, WANG H, et al. Urchin-like boron nitride hierarchical structure assembled by nanotubes-nanosheets for effective removal of heavy metal ions[J]. Ceramics International, 2018, 44(11):12216-12224.
DOI URL |
[23] |
NIGUÉS A, SIRIA A, VINCENT P, et al. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes[J]. Nature Materials, 2014, 13(7):688-693.
DOI URL |
[24] | MOVLAROOY T, MINAIE B. First principles study of structural and electronic properties of BNNTs[J]. Journal of Computational Electronics, 2018, 17(4):1441-1449. |
[25] | YUN K N, SUN Y, HAN J S, et al. High-performance field-emission properties of boron nitride nanotube field emitters[J]. ACS Applied Materials & Interfaces, 2017, 9(2):1562-1568. |
[26] |
YU Y L, CHEN H, LIU Y, et al. Superhydrophobic and superoleophilic boron nitride nanotube-coated stainless steel meshes for oil and water separation[J]. Advanced Materials Interfaces, 2014, 1(1):1300002.
DOI URL |
[27] | 龙晓阳, 俄松峰, 李朝威, 等. 化学气相沉积法制备氮化硼纳米管的研究进展反应装置、气源材料、催化剂[J]. 材料导报, 2017, 31(19):19-27. |
[28] | LI L H, CHEN Y. Boron nitride nanotube films:preparation,properties,and implications for biology applications[M/OL]. United States of America:Boron Nitride Nanotubes in Nanomedicine,2016:165-181[2016-04-11]. https://doi.org/10.1016/B978-0-323-38945-7.00011-0 . |
[29] |
ADNAN M, MARINCEL D M, KLEINERMAN O, et al. Extraction of boron nitride nanotubes and fabrication of macroscopic articles using chlorosulfonic acid[J]. Nano Letters, 2018, 18(3):1615-1619.
DOI URL |
[30] |
XU T, ZHOU Y L, TAN X D, et al. Creating the smallest BN nanotube from bilayer h-BN[J]. Advanced Functional Materials, 2017, 27(19):1603897.
DOI URL |
[31] |
XU X G, GILBURD L, BANDO Y, et al. Defects and deformation of boron nitride nanotubes studied by joint nanoscale mechanical and infrared near-field microscopy[J]. The Journal of Physical Chemistry C, 2016, 120(3):1945-1951.
DOI URL |
[32] |
WANG J L, PENG D J, LONG F, et al. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes[J]. Solid State Sciences, 2017, 64:23-28.
DOI URL |
[33] |
WEBER M, IATSUNSKYI I, COY E, et al. Novel and facile route for the synjournal of tunable boron nitride nanotubes combining atomic layer deposition and annealing processes for water purification[J]. Advanced Materials Interfaces, 2018, 5(16):1800056.
DOI URL |
[34] | KUWAHARA H. Creation of boron nitride nanotubes and possibility for a series of advanced nanocomposite materials[M/OL]. Third edition.United States of America:Nanoparticle Technology Handbook,2018:751-758[2018-03-09]. https://doi.org/10.1016/B978-0-444-64110-6.00072-X . |
[35] | JIANG X F, WENG Q H, WANG X B. Recent progress on fabrications and applications of boron nitride nanomaterials:a review[J]. Journal of Materials Science & Technology, 2015, 31(6):589-598. |
[36] | BHANDARI S, TIWARI B, YAPICI N, et al. Introduction to boron nitride nanotubes synthesis,properties,functionalization,and cutting[M/OL]. United States of America:Boron Nitride Nanotubes in Nanomedicine,2016:1-15[2016-04-19]. https://doi.org/10.1016/B978-0-323-38945-7.00001-8 . |
[37] |
KALAY S, YILMAZ Z, SEN O, et al. Synjournal of boron nitride nanotubes and their applications[J]. Beilstein Journal of Nanotechnology, 2015, 6(1):84-102.
DOI URL |
[38] |
YEH Y W, RAITSES Y, KOEL B E, et al. Stable synjournal of few-layered boron nitride nanotubes by anodic arc discharge[J]. Scientific Reports, 2017, 7(1):3075.
DOI URL |
[39] |
LOISEAU A, WILLAIME F, DEMONCY N, et al. Boron nitride nanotubes[J]. Carbon, 1998, 36(5-6):743-752.
DOI URL |
[40] |
VIEIRA S M C, CARROLL D L. Purification of boron nitride multiwalled nanotubes[J]. Journal of Nanoscience and Nanotechnology, 2007, 7(9):3318-3322.
DOI URL |
[41] |
LEE C M, CHOI S I, CHOI S S, et al. Synjournal of boron nitride nanotubes by arc-jet plasma[J]. Current Applied Physics, 2005, 6(2):166-170.
DOI URL |
[42] |
LI C W, LONG X Y, E S F, et al. Magnesium-induced preparation of boron nitride nanotubes and their application in thermal interface materials[J]. Nanoscale, 2019, 11(24):11457-11463.
DOI URL |
[43] |
FERREIRA T H, SILVA P R O, SANTOS R G, et al. A novel synjournal route to produce boron nitride nanotubes for bioapplications[J]. Journal of Biomaterials and Nanobiotechnology, 2011, 2(4):426-434.
DOI URL |
[44] |
WANG L J, LI T T, LING L, et al. Remote catalyzation for growth of boron nitride nanotubes by low pressure chemical vapor deposition[J]. Chemical Physics Letters, 2016, 652:27-31.
DOI URL |
[45] |
WU J F, CHEN H, ZHAO L, et al. Synjournal of boron nitride nanotubes by catalytic pyrolysis of organic-inorganic hybrid precursor[J]. Ceramics International, 2017, 43(6):5145-5149.
DOI URL |
[46] |
AHMAD P, KHANDAKER M U, AMIN Y M, et al. Low temperature synjournal of high quality BNNTs via argon supported thermal CVD[J]. Ceramics International, 2015, 41(10):15222-15226.
DOI URL |
[47] |
AHMAD P, KHANDAKER M U, AMIN Y M, et al. Influence of growth duration on size and morphology of boron nitride nanotubes grown via chemical vapor deposition technique[J]. Journal of Physics and Chemistry of Solids, 2015, 85:226-232.
DOI URL |
[48] |
AHMAD P, KHANDAKER M U, MUHAMMAD N, et al. Magnesium diboride (MgB2):An effective and novel precursor for the synjournal of vertically aligned BNNTs[J]. Materials Research Bulletin, 2018, 98:235-239.
DOI URL |
[49] |
WANG H, WANG W M, WANG H, et al. Synjournal of boron nitride nanotubes by combining citrate-nitrate combustion reaction and catalytic chemical vapor deposition[J]. Ceramics International, 2018, 44(12):13959-13966.
DOI URL |
[50] |
E S F, LONG X Y, LI C W, et al. Boron nitride nanotubes grown on stainless steel from a mixture of diboron trioxide and boron[J]. Chemical Physics Letters, 2017, 687:307-311.
DOI URL |
[51] |
KIM J, LEE S, UHM Y R, et al. Synjournal and growth of boron nitride nanotubes by a ball milling-annealing process[J]. Acta Materialia, 2011, 59(7):2807-2813.
DOI URL |
[52] |
LI L, LIU X W, LI L H, et al. High yield BNNTs synjournal by promotion effect of milling-assisted precursor[J]. Microelectronic Engineering, 2013, 110:256-259.
DOI URL |
[53] |
SEO D, KIM J, PARK S H, et al. Synjournal of boron nitride nanotubes using thermal chemical vapor deposition of ball milled boron powder[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(4):1117-1122.
DOI URL |
[54] |
KIM J K, JIN C, PARK J, et al. Synjournal of boron nitride nanotubes incorporated with Pd and Pt nanoparticles for catalytic oxidation of carbon monoxide[J]. Industrial & Engineering Chemistry Research, 2019, 58(43):20154-20161.
DOI URL |
[55] |
E S F, GENG R J, ZHU Z Z, et al. Large-scale fabrication of boron nitride nanotubes and their application in thermoplastic polyurethane based composite for improved thermal conductivity[J]. Ceramics International, 2018, 44(18):22794-22799.
DOI URL |
[56] | LIU X W, LI L, DAI J N, et al. Synjournal of high density boron nitride nanotube film[J]. Key Engineering Materials, 2013, 2477:926-929. |
[57] |
ZHUANG C C, FENG J, XU H, et al. Synjournal of boron nitride nanotube films with a nanoparticle catalyst[J]. Chinese Chemical Letters, 2016, 27(6):871-874.
DOI URL |
[58] |
LI L, FAN S D, ZHUANG C C, et al. Customizable local superhydrophobic micro channels by BNNTs growth[J]. Microelectronic Engineering, 2015, 141:223-227.
DOI URL |
[1] | 吴帅兵, 梁峰, 李亚格, 张鑫, 蔡伟杰, 张海军, 张少伟. 纳米材料改性低碳Al2O3-C耐火材料的研究现状[J]. 耐火材料, 2022, 56(5): 440-446. |
[2] | 张鑫, 韩磊, 吴帅兵, 蔡伟杰, 张海军. BN多孔陶瓷的制备研究进展[J]. 耐火材料, 2022, 56(2): 174-179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||