耐火材料 ›› 2021, Vol. 55 ›› Issue (1): 44-50.DOI: 10.3969/j.issn.1001-1935.2021.01.010
闪静祎1(), 王军凯1(
), 黄珍霞2, 戴新宇1, 胡前库1, 周爱国1
收稿日期:
2020-06-15
出版日期:
2021-02-15
发布日期:
2021-02-15
通讯作者:
王军凯:男,1988年生,博士,讲师。E-mail: jkwang@hpu.edu.cn作者简介:
闪静祎:女,1999年生,本科在读。E-mail: 1766487634@qq.com
基金资助:
Shan Jingyi1(), Wang Junkai1(
), Huang Zhenxia2, Dai Xinyu1, Hu Qianku1, Zhou Aiguo1
Received:
2020-06-15
Online:
2021-02-15
Published:
2021-02-15
Contact:
Wang Junkai
摘要:
镁钙系耐火材料是冶炼洁净钢的理想耐火材料,然而其中的游离氧化钙易水化,限制了其广泛的应用。在本工作中,采用第一性原理计算的方法研究了H2O分子在CaO(100)表面的吸附行为。在此基础上又研究了外加电场对H2O分子在CaO(100)表面吸附行为的影响。结果表明:H2O分子最容易以垂直向上取向和垂直向下取向吸附于CaO(100)表面的桥位。在外加负电场的作用下,H2O分子与CaO(100)表面之间的距离和吸附能均随电场强度的增强而增大。同时H2O分子的键角不断减小,逐渐趋向于单独水分子。电荷转移结果表明,随着负电场强度的增加,Ca原子向O原子转移的电子越来越少,这再次表明H2O分子与CaO(100)面的相互作用不断减弱。在外加正电场的作用下,随着电场强度的逐渐增强,H2O分子和CaO(100)面间的距离变化不大,但吸附能逐渐由负值变为正值。外加电场可以抑制H2O分子在CaO表面的吸附,为镁钙系耐火材料防水化提供了一种新方法。
中图分类号:
闪静祎, 王军凯, 黄珍霞, 戴新宇, 胡前库, 周爱国. 外电场对水在CaO(100)表面吸附的第一性原理计算[J]. 耐火材料, 2021, 55(1): 44-50.
Shan Jingyi, Wang Junkai, Huang Zhenxia, Dai Xinyu, Hu Qianku, Zhou Aiguo. First-principle calculation of water adsorption on CaO(100) face under external electric field[J]. Refractories, 2021, 55(1): 44-50.
图2 H2O分子吸附在CaO(100)表面H、B、T位点的初始构型和优化构型示意图
Fig.2 Initial and optimized configurations of hollow(H),bridge(B) and top(T) sites adsorbed by H2O on CaO(100) face
吸附位点 | Ead/eV | 电荷/e |
---|---|---|
H | -1.205 | -0.166 |
B | -1.206 | -0.166 |
T | -0.420 | -0.146 |
表1 不同吸附位点吸附能和电荷的值
Table 1 Value of adsorption energy and charge at different sites
吸附位点 | Ead/eV | 电荷/e |
---|---|---|
H | -1.205 | -0.166 |
B | -1.206 | -0.166 |
T | -0.420 | -0.146 |
构型 | Ead/eV | 电荷/e | ||
---|---|---|---|---|
B-a | -0.349 | -0.015 | 0.097 5 | 0.097 5 |
B-b | -0.152 | 0.008 | 0.097 0 | 0.097 0 |
B-c | -0.156 | 0.091 | 0.097 1 | 0.097 1 |
B-d | -1.206 | -0.166 | 0.096 8 | 0.144 4 |
B-e | -1.206 | -0.166 | 0.096 8 | 0.144 5 |
表2 不同取向H2O分子吸附前后的电子电荷、键长、吸附能的值(“-”表示获得电子)
Table 2 Values of electron charge,bond length,adsoption energy before and after adsorption of H2O with different orientations (the “-” denotes gaining electrons)
构型 | Ead/eV | 电荷/e | ||
---|---|---|---|---|
B-a | -0.349 | -0.015 | 0.097 5 | 0.097 5 |
B-b | -0.152 | 0.008 | 0.097 0 | 0.097 0 |
B-c | -0.156 | 0.091 | 0.097 1 | 0.097 1 |
B-d | -1.206 | -0.166 | 0.096 8 | 0.144 4 |
B-e | -1.206 | -0.166 | 0.096 8 | 0.144 5 |
E/(V·nm-1) | Ead/eV | d/nm |
---|---|---|
0.000 0 | -1.205 | 0.191 3 |
-2.056 9 | -0.979 | 0.196 1 |
-3.599 6 | -0.157 | 0.200 8 |
-4.113 8 | 0.253 | 0.202 3 |
-5.142 3 | 1.285 | 0.207 2 |
表3 不同电场下的吸附能和距离
Table 3 Value of adsorption energy and distance under di-fferent electric fields
E/(V·nm-1) | Ead/eV | d/nm |
---|---|---|
0.000 0 | -1.205 | 0.191 3 |
-2.056 9 | -0.979 | 0.196 1 |
-3.599 6 | -0.157 | 0.200 8 |
-4.113 8 | 0.253 | 0.202 3 |
-5.142 3 | 1.285 | 0.207 2 |
[1] | 陈树江, 田琳, 李国华, 等. 镁钙系耐火材料[M]. 北京: 冶金工业出版社, 2012: 3-10. |
[2] | 李楠, 匡加才. 碱性耐火材料的脱硫作用[J]. 耐火材料, 2001,35(2):63-65. |
[3] | 龚楚清, 李楠, 钟家柽, 等. 新型镁钙铝浇注料的脱磷作用研究[J]. 耐火材料, 2004,38(3):148-150+156. |
[4] | PAYANDEH Y, SOLTANIEH M. Oxide inclusions at different steps of steel production[J]. Journal of Iron and Steel Research(International), 2007,14(5):39-46. |
[5] |
BHATTACHARYA T K, GHOSH A, DAS S K, et al. Densification of reactive lime from limestone[J]. Ceramics International, 2001,27(4):455-459.
DOI URL |
[6] | 王宏联, 崔庆阳, 薛群虎, 等. CaO耐火材料抗水化性的研究进展[J]. 材料导报, 2009,23(S1):510-512+516. |
[7] | 韩文涛. 通过添加TiO2和包覆磷酸盐改进MgO-CaO系砂的质量[J]. 国外耐火材料, 1996,21(3):43-46. |
[8] | 侯冬枝, 张文杰, 顾华志, 等. 聚磷酸盐表面处理镁钙砂的抗水化性能[J]. 耐火材料, 2002,36(1):16-17+20. |
[9] |
GHOSH A, BHATTACHARYA T K, MUKHERJEE B, et al. The effect of CuO addition on the sintering of lime[J]. Ceramics International, 2001,27(2):201-204.
DOI URL |
[10] | 熊星云, 崔昆. 抗水化高纯氧化钙材料的研究[J]. 钢铁研究, 1997,25(4):38-43. |
[11] | 肖国庆, 杨兴华. Fe2O3、Al2O3加入物对镁钙砂抗水化性的影响[J]. 耐火材料, 1998,32(2):77-79. |
[12] |
SHI H S, ZHAO Y J, LI W W, et al. Effects of temperature on the hydration characteristics of free lime[J]. Cement and Concrete Research, 2002,32(5):789-793.
DOI URL |
[13] |
GRASA S G, ABANADES C J, ALONSO M, et al. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop[J]. Chemical Engineering Journal, 2007,137(3):561-567.
DOI URL |
[14] |
CHEN M, WANG N, YU J K, et al. Effect of porosity on carbonation and hydration resistance of CaO materials[J]. Journal of the European Ceramic Society, 2006,27(4):1953-1959.
DOI URL |
[15] | 刘忠宝, 肖勇, 段峰, 等. TiO2对镁钙材料抗水化性能的影响[J]. 新世纪水泥导报, 2010,16(2):49-51. |
[16] |
CHEN M, WANG N, YU J K, et al. Oxidation protection of CaO-ZrO2-C refractories by addition of SiC[J]. Ceramics International, 2006,33(8):1585-1589.
DOI URL |
[17] | 于秋月. MgO-CaO耐火材料抗水化性能研究进展[J]. 有色矿冶, 2018,34(2):39-42. |
[18] |
DAI W, SHUI Z H, LI K, et al. First-principle investigations of CaO(100) surface and adsorption of H2O on CaO (100)[J]. Computational and Theoretical Chemistry, 2011,967(1):185-190.
DOI URL |
[19] |
HAN Z Y, YANG Y R, KONG D X, et al. Surface-scale affinity and adsorption selectivity of alkaline earth metal oxides to H2O and CO2:Insight into SOFC anode modification[J]. Applied Surface Science, 2020,503:144333.
DOI URL |
[20] |
MA X, LI Y, ZHANG W, et al. DFT study of CO2 adsorption across a CaO/Ca12Al14O33 sorbent in the presence of H2O under calcium looping conditions[J]. Chemical Engineering Journal, 2019,370:10-18.
DOI URL |
[21] |
LIANG X Y, DING N, SIU-PANG N, et al. Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field:A DFT study[J]. Applied Surface Science, 2017,411:11-17.
DOI URL |
[22] |
TU Y B, TAO M L, SUN K, et al. Effects of an electric field on the adsorption of water molecules on the Cd(0001) surface[J]. Surface Science, 2018,668:1-6.
DOI URL |
[23] |
WANG F, LI P H, WEI S Q, et al. The role of electric field in enhancing separation of gas molecules (H2S,CO2,H2O) on VIB modified g-C3N4(001)[J]. Applied Surface Science, 2018,445:568-574.
DOI URL |
[24] | ESRAFILI M D. Electric field assisted activation of CO2 over P-doped graphene:A DFT study[J]. Journal of moleculargraphics &modelling, 2019,90:192-198. |
[25] |
KHAN A A, AHMAD I, AHMAD R, et al. Influence of electric field on CO2 removal by P-doped C60-fullerene:A DFT study[J]. Chemical Physics Letters, 2020,742:137155.
DOI URL |
[26] |
YANG S L, LEI G, XU H X, et al. A DFT study of CO adsorption on the pristine,defective,In-doped and Sb-doped graphene and the effect of applied electric field[J]. Applied Surface Science, 2019,480(30):205-211.
DOI URL |
[27] |
DELLEY B. From molecules to solids with the DMol3 approach [J]. The Journal of Chemical Physics, 2000,113(18):7756-7764.
DOI URL |
[28] |
PERDEW J P, BURKE K, ERNZERHOF M, et al. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996,77(18):3865-3868.
DOI URL |
[29] |
PERDEW J P, WANG Y. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Physical Review B, 1986,33(12):8800-8802.
DOI URL |
[30] |
DELLEY B. Hardness conserving semilocal pseudopotentials[J]. Physical Review B, 2002,66(15):155125-155134.
DOI URL |
[31] |
PACK J D, MONKHORST H J. “Special points for Brillouin-zone integrations”—a reply[J]. Physical Review B, 1977,16(4):1748-1749.
DOI URL |
[32] | 韦柳婷, 童张法, 吴东海, 等. 氧化钙(100)、(110)和Ca-terminated(111)表面性能的第一性原理研究[J]. 广西科学, 2015,22(6):670-674+680. |
[33] |
MULLIKEN RS. Electronic population analysis on LCAO-MO molecular wave functions[J]. The Journal of Chemical Physics, 1955,23(12):2338-2342.
DOI URL |
[34] |
FAYE O, RAJ A, MITTAL V, et al. H2S adsorption on graphene in the presence of sulfur:A density functional theory study[J]. Computational Materials Science, 2016,117(10):110-119.
DOI URL |
[35] |
HUSSAIN A, FERRÉ C D, GRACIA J, et al. DFT study of CO and NO adsorption on low index and stepped surfaces of gold[J]. Surface Science, 2009,603(17):2734-2741.
DOI URL |
[1] | 王鑫, 王军凯, 黄珍霞, 王一菲, 赵辰航, 马帅领. 镁钙系耐火材料的抗水化研究进展[J]. 耐火材料, 2023, 57(1): 82-86. |
[2] | 刘伟, 崔杏辉, 高正霞, 陶梦雅, 锁东, 田世帅, 马成良. 窑炉烟气中NO2吸附材料性能研究[J]. 耐火材料, 2022, 56(6): 472-476. |
[3] | 闪静祎, 黄珍霞, 王军凯, 李韬, 周轩, 邢盈盈. Fe、Co及Ni单掺3C-SiC力学性能的第一性原理计算[J]. 耐火材料, 2021, 55(6): 476-482. |
[4] | 刘可乐1), 刘静静2), 李亚杰1), 任 博2), 刘相枫1), 常仕博1) , 段 婷1), 王修慧1), 杨金龙1,2). 网状孔壁煤矸石多孔陶瓷的制备及其对亚甲基蓝吸附研究[J]. , 2020, 54(5): 380-384. |
[5] | 张冰冰,朱伯铨,李享成,陈平安. 不同分散剂对磷酸结合刚玉质浇注料基质浆体流变性能的影响[J]. , 2019, 53(6): 423-429. |
[6] | 王世界1),刘玉瑛2),巩志伟1),崔杏辉1),武立云3),张继光3),陈凯阳1),高金星1),马成良1). 耐火材料燃气窑炉的氮氧化物减排技术研究[J]. , 2019, 53(2): 145-149. |
[7] | 李桂娟,李淑静,李远兵. 锯末粒度对镁橄榄石-SiO2多孔陶粒性能的影响[J]. , 2017, 51(2): 112-117. |
[8] | 吴占德,蒋明学. 镁钙系耐火材料的研究现状[J]. , 2009, 43(2): 136-0. |
[9] | 谭强强,唐子龙,张中太,尧巍华,方. 纳米四方多晶氧化锆粉体的表面特性与分散性 [J]. , 2003, 37(1): 25-27. |
[10] | 江龄南,李楠. 白云石在俄罗斯转炉中的应用[J]. , 1993, 27(1): 54-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||