Refractories ›› 2021, Vol. 55 ›› Issue (1): 44-50.DOI: 10.3969/j.issn.1001-1935.2021.01.010
Previous Articles Next Articles
Shan Jingyi1(), Wang Junkai1(
), Huang Zhenxia2, Dai Xinyu1, Hu Qianku1, Zhou Aiguo1
Received:
2020-06-15
Online:
2021-02-15
Published:
2021-02-15
Contact:
Wang Junkai
闪静祎1(), 王军凯1(
), 黄珍霞2, 戴新宇1, 胡前库1, 周爱国1
通讯作者:
王军凯
作者简介:
闪静祎:女,1999年生,本科在读。E-mail: 1766487634@qq.com
基金资助:
CLC Number:
Shan Jingyi, Wang Junkai, Huang Zhenxia, Dai Xinyu, Hu Qianku, Zhou Aiguo. First-principle calculation of water adsorption on CaO(100) face under external electric field[J]. Refractories, 2021, 55(1): 44-50.
闪静祎, 王军凯, 黄珍霞, 戴新宇, 胡前库, 周爱国. 外电场对水在CaO(100)表面吸附的第一性原理计算[J]. 耐火材料, 2021, 55(1): 44-50.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.nhcl.cn/EN/10.3969/j.issn.1001-1935.2021.01.010
吸附位点 | Ead/eV | 电荷/e |
---|---|---|
H | -1.205 | -0.166 |
B | -1.206 | -0.166 |
T | -0.420 | -0.146 |
Table 1 Value of adsorption energy and charge at different sites
吸附位点 | Ead/eV | 电荷/e |
---|---|---|
H | -1.205 | -0.166 |
B | -1.206 | -0.166 |
T | -0.420 | -0.146 |
构型 | Ead/eV | 电荷/e | ||
---|---|---|---|---|
B-a | -0.349 | -0.015 | 0.097 5 | 0.097 5 |
B-b | -0.152 | 0.008 | 0.097 0 | 0.097 0 |
B-c | -0.156 | 0.091 | 0.097 1 | 0.097 1 |
B-d | -1.206 | -0.166 | 0.096 8 | 0.144 4 |
B-e | -1.206 | -0.166 | 0.096 8 | 0.144 5 |
Table 2 Values of electron charge,bond length,adsoption energy before and after adsorption of H2O with different orientations (the “-” denotes gaining electrons)
构型 | Ead/eV | 电荷/e | ||
---|---|---|---|---|
B-a | -0.349 | -0.015 | 0.097 5 | 0.097 5 |
B-b | -0.152 | 0.008 | 0.097 0 | 0.097 0 |
B-c | -0.156 | 0.091 | 0.097 1 | 0.097 1 |
B-d | -1.206 | -0.166 | 0.096 8 | 0.144 4 |
B-e | -1.206 | -0.166 | 0.096 8 | 0.144 5 |
E/(V·nm-1) | Ead/eV | d/nm |
---|---|---|
0.000 0 | -1.205 | 0.191 3 |
-2.056 9 | -0.979 | 0.196 1 |
-3.599 6 | -0.157 | 0.200 8 |
-4.113 8 | 0.253 | 0.202 3 |
-5.142 3 | 1.285 | 0.207 2 |
Table 3 Value of adsorption energy and distance under di-fferent electric fields
E/(V·nm-1) | Ead/eV | d/nm |
---|---|---|
0.000 0 | -1.205 | 0.191 3 |
-2.056 9 | -0.979 | 0.196 1 |
-3.599 6 | -0.157 | 0.200 8 |
-4.113 8 | 0.253 | 0.202 3 |
-5.142 3 | 1.285 | 0.207 2 |
[1] | 陈树江, 田琳, 李国华, 等. 镁钙系耐火材料[M]. 北京: 冶金工业出版社, 2012: 3-10. |
[2] | 李楠, 匡加才. 碱性耐火材料的脱硫作用[J]. 耐火材料, 2001,35(2):63-65. |
[3] | 龚楚清, 李楠, 钟家柽, 等. 新型镁钙铝浇注料的脱磷作用研究[J]. 耐火材料, 2004,38(3):148-150+156. |
[4] | PAYANDEH Y, SOLTANIEH M. Oxide inclusions at different steps of steel production[J]. Journal of Iron and Steel Research(International), 2007,14(5):39-46. |
[5] |
BHATTACHARYA T K, GHOSH A, DAS S K, et al. Densification of reactive lime from limestone[J]. Ceramics International, 2001,27(4):455-459.
DOI URL |
[6] | 王宏联, 崔庆阳, 薛群虎, 等. CaO耐火材料抗水化性的研究进展[J]. 材料导报, 2009,23(S1):510-512+516. |
[7] | 韩文涛. 通过添加TiO2和包覆磷酸盐改进MgO-CaO系砂的质量[J]. 国外耐火材料, 1996,21(3):43-46. |
[8] | 侯冬枝, 张文杰, 顾华志, 等. 聚磷酸盐表面处理镁钙砂的抗水化性能[J]. 耐火材料, 2002,36(1):16-17+20. |
[9] |
GHOSH A, BHATTACHARYA T K, MUKHERJEE B, et al. The effect of CuO addition on the sintering of lime[J]. Ceramics International, 2001,27(2):201-204.
DOI URL |
[10] | 熊星云, 崔昆. 抗水化高纯氧化钙材料的研究[J]. 钢铁研究, 1997,25(4):38-43. |
[11] | 肖国庆, 杨兴华. Fe2O3、Al2O3加入物对镁钙砂抗水化性的影响[J]. 耐火材料, 1998,32(2):77-79. |
[12] |
SHI H S, ZHAO Y J, LI W W, et al. Effects of temperature on the hydration characteristics of free lime[J]. Cement and Concrete Research, 2002,32(5):789-793.
DOI URL |
[13] |
GRASA S G, ABANADES C J, ALONSO M, et al. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop[J]. Chemical Engineering Journal, 2007,137(3):561-567.
DOI URL |
[14] |
CHEN M, WANG N, YU J K, et al. Effect of porosity on carbonation and hydration resistance of CaO materials[J]. Journal of the European Ceramic Society, 2006,27(4):1953-1959.
DOI URL |
[15] | 刘忠宝, 肖勇, 段峰, 等. TiO2对镁钙材料抗水化性能的影响[J]. 新世纪水泥导报, 2010,16(2):49-51. |
[16] |
CHEN M, WANG N, YU J K, et al. Oxidation protection of CaO-ZrO2-C refractories by addition of SiC[J]. Ceramics International, 2006,33(8):1585-1589.
DOI URL |
[17] | 于秋月. MgO-CaO耐火材料抗水化性能研究进展[J]. 有色矿冶, 2018,34(2):39-42. |
[18] |
DAI W, SHUI Z H, LI K, et al. First-principle investigations of CaO(100) surface and adsorption of H2O on CaO (100)[J]. Computational and Theoretical Chemistry, 2011,967(1):185-190.
DOI URL |
[19] |
HAN Z Y, YANG Y R, KONG D X, et al. Surface-scale affinity and adsorption selectivity of alkaline earth metal oxides to H2O and CO2:Insight into SOFC anode modification[J]. Applied Surface Science, 2020,503:144333.
DOI URL |
[20] |
MA X, LI Y, ZHANG W, et al. DFT study of CO2 adsorption across a CaO/Ca12Al14O33 sorbent in the presence of H2O under calcium looping conditions[J]. Chemical Engineering Journal, 2019,370:10-18.
DOI URL |
[21] |
LIANG X Y, DING N, SIU-PANG N, et al. Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field:A DFT study[J]. Applied Surface Science, 2017,411:11-17.
DOI URL |
[22] |
TU Y B, TAO M L, SUN K, et al. Effects of an electric field on the adsorption of water molecules on the Cd(0001) surface[J]. Surface Science, 2018,668:1-6.
DOI URL |
[23] |
WANG F, LI P H, WEI S Q, et al. The role of electric field in enhancing separation of gas molecules (H2S,CO2,H2O) on VIB modified g-C3N4(001)[J]. Applied Surface Science, 2018,445:568-574.
DOI URL |
[24] | ESRAFILI M D. Electric field assisted activation of CO2 over P-doped graphene:A DFT study[J]. Journal of moleculargraphics &modelling, 2019,90:192-198. |
[25] |
KHAN A A, AHMAD I, AHMAD R, et al. Influence of electric field on CO2 removal by P-doped C60-fullerene:A DFT study[J]. Chemical Physics Letters, 2020,742:137155.
DOI URL |
[26] |
YANG S L, LEI G, XU H X, et al. A DFT study of CO adsorption on the pristine,defective,In-doped and Sb-doped graphene and the effect of applied electric field[J]. Applied Surface Science, 2019,480(30):205-211.
DOI URL |
[27] |
DELLEY B. From molecules to solids with the DMol3 approach [J]. The Journal of Chemical Physics, 2000,113(18):7756-7764.
DOI URL |
[28] |
PERDEW J P, BURKE K, ERNZERHOF M, et al. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996,77(18):3865-3868.
DOI URL |
[29] |
PERDEW J P, WANG Y. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Physical Review B, 1986,33(12):8800-8802.
DOI URL |
[30] |
DELLEY B. Hardness conserving semilocal pseudopotentials[J]. Physical Review B, 2002,66(15):155125-155134.
DOI URL |
[31] |
PACK J D, MONKHORST H J. “Special points for Brillouin-zone integrations”—a reply[J]. Physical Review B, 1977,16(4):1748-1749.
DOI URL |
[32] | 韦柳婷, 童张法, 吴东海, 等. 氧化钙(100)、(110)和Ca-terminated(111)表面性能的第一性原理研究[J]. 广西科学, 2015,22(6):670-674+680. |
[33] |
MULLIKEN RS. Electronic population analysis on LCAO-MO molecular wave functions[J]. The Journal of Chemical Physics, 1955,23(12):2338-2342.
DOI URL |
[34] |
FAYE O, RAJ A, MITTAL V, et al. H2S adsorption on graphene in the presence of sulfur:A density functional theory study[J]. Computational Materials Science, 2016,117(10):110-119.
DOI URL |
[35] |
HUSSAIN A, FERRÉ C D, GRACIA J, et al. DFT study of CO and NO adsorption on low index and stepped surfaces of gold[J]. Surface Science, 2009,603(17):2734-2741.
DOI URL |
[1] | Xue Tianyu, Huang Zhong, Huang Ren, Zhang Haijun. Hydration resistance of modified light-burned MgO fine powders [J]. Refractories, 2024, 58(1): 30-34. |
[2] | Bai Pinbo, Xing Li, Kong Xiangchen, Tian Yuming. Preparation of calcium hexaaluminate/gehlenite composite from industrial magnesium slag [J]. Refractories, 2023, 57(3): 226-230. |
[3] | Wang Sen, Liang Feng, Wang Xiaohan, Gu Haohui, Wu Shuaibing, Lyu Gongye, Zhang Haijun. Synthesis and hydration resistance of α-Si3N4-AlN composite powder by molten salt method [J]. Refractories, 2023, 57(1): 27-30. |
[4] | Wang Xin, Wang Junkai, Huang Zhenxia, Wang Yifei, Zhao Chenhang, Ma Shuailing. Research progress on hydration resistance of magnesia-calcia refractories [J]. Refractories, 2023, 57(1): 82-86. |
[5] | Liu Wei, Cui Xinghui, Gao Zhengxia, Tao Mengya, Suo Dong, Tian Shishuai, Ma Chengliang. Performance of adsorbents for NO2 in furnace flue gas [J]. Refractories, 2022, 56(6): 472-476. |
[6] | Huang Ren, Li Kezhuo, Xie Houbo, Gao Ruihong, Huang Zhong, Zhang Haijun, Zhang Shaowei. Research progress on hydration resistance of magnesia-calcia refractories [J]. Refractories, 2022, 56(4): 277-282. |
[7] | Li Xiang, Qi Wenhao, Meng Wei, Ma Chengliang, Zhong Xiangchong. Effect of calcia/silica ratio on properties of stabilized magnesia dolomite materials [J]. Refractories, 2021, 55(5): 414-416. |
[8] | Li Jinfeng, Wang Li, Qi Xiaopeng, Zhong Junpeng, Zhang Yu, Zhang Dunxin. Effect of ferrocene content on properties of unburned magnesia-calcia refractories [J]. Refractories, 2021, 55(1): 64-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||