Refractories ›› 2021, Vol. 55 ›› Issue (3): 258-263.DOI: 10.3969/j.issn.1001-1935.2021.03.017
Previous Articles Next Articles
Li Di(), Li Xiangcheng(
), Zhu Yingli, Chen Ping’an, Zhu Boquan
Received:
2020-08-11
Online:
2021-06-15
Published:
2021-06-24
Contact:
Li Xiangcheng
通讯作者:
李享成
作者简介:
李迪:男,1996年生,硕士研究生。E-mail: 13577490907@163.com
基金资助:
CLC Number:
Li Di, Li Xiangcheng, Zhu Yingli, Chen Ping’an, Zhu Boquan. Research progress of rare-earth zirconate thermal barrier coatings[J]. Refractories, 2021, 55(3): 258-263.
李迪, 李享成, 朱颖丽, 陈平安, 朱伯铨. 稀土锆酸盐热障涂层材料的研究进展[J]. 耐火材料, 2021, 55(3): 258-263.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.nhcl.cn/EN/10.3969/j.issn.1001-1935.2021.03.017
原子 | 烧绿石结构 (Fd3m) | 萤石结构 (Fm3m) | 缺陷型萤石结构 (Fm3m) |
---|---|---|---|
L | 16d | 4a | 16c或16d |
Zr | 16c | 4a | 16c或16d |
O | 48f | 8c | 48f、8a或8b |
O' | 8b | — | 48f、8a或8b |
Vo | 8a | — | 48f、8a或8b |
原子 | 烧绿石结构 (Fd3m) | 萤石结构 (Fm3m) | 缺陷型萤石结构 (Fm3m) |
---|---|---|---|
L | 16d | 4a | 16c或16d |
Zr | 16c | 4a | 16c或16d |
O | 48f | 8c | 48f、8a或8b |
O' | 8b | — | 48f、8a或8b |
Vo | 8a | — | 48f、8a或8b |
材料 | 热导率/(W·m-1·K-1) | 热膨胀系数×106/K-1 | |
---|---|---|---|
La2Zr2O7 | 1.56(1 000 ℃)[ | 9.1(1 000 ℃)[ | |
1.30(1 100 ℃)[ | — | ||
1.15(1 450 ℃)[ | — | ||
Nd2Zr2O7 | 1.25(800 ℃)[ | 9.5(800 ℃)[ | |
Sm2Zr2O7 | 1.6(700 ℃)[ | — | |
1.5(1 100 ℃)[ | 10.8(1 200 ℃)[ | ||
Eu2Zr2O7 | 1.60(1 100 ℃)[ | — | |
Gd2Zr2O7 | 1.91(1 200 ℃)[ | 11.6(1 200 ℃)[ | |
Dy2Zr2O7 | 1.34(800 ℃)[ | 11.1(1 200 ℃)[ | |
Er2Zr2O7 | 1.49(800 ℃)[ | — | |
Yb2Zr2O7 | 1.58(800 ℃)[ | — |
材料 | 热导率/(W·m-1·K-1) | 热膨胀系数×106/K-1 | |
---|---|---|---|
La2Zr2O7 | 1.56(1 000 ℃)[ | 9.1(1 000 ℃)[ | |
1.30(1 100 ℃)[ | — | ||
1.15(1 450 ℃)[ | — | ||
Nd2Zr2O7 | 1.25(800 ℃)[ | 9.5(800 ℃)[ | |
Sm2Zr2O7 | 1.6(700 ℃)[ | — | |
1.5(1 100 ℃)[ | 10.8(1 200 ℃)[ | ||
Eu2Zr2O7 | 1.60(1 100 ℃)[ | — | |
Gd2Zr2O7 | 1.91(1 200 ℃)[ | 11.6(1 200 ℃)[ | |
Dy2Zr2O7 | 1.34(800 ℃)[ | 11.1(1 200 ℃)[ | |
Er2Zr2O7 | 1.49(800 ℃)[ | — | |
Yb2Zr2O7 | 1.58(800 ℃)[ | — |
[1] |
MILLER R A. Thermal barrier coatings for aircraft engines:history and directions[J]. J Therm Spray Technol, 1997,6(1):35-42.
DOI URL |
[2] | 孙方红, 马壮, 刘应瑞, 等. 等离子喷涂陶瓷涂层降低孔隙率的研究进展[J]. 硅酸盐通报, 2013,32(11):2274-2280. |
[3] |
CAO X Q, VASSEN R, JUNGEN W, et al. Thermal stability of lanthanum zirconate plasma-sprayed coating[J]. J Am Ceram Soc, 2001,84(9):2086-2090.
DOI URL |
[4] | 张小锋, 周克崧, 宋进兵, 等. 黏结层粗糙度对热障涂层高温氧化及力学性能的影响[J]. 硅酸盐学报, 2013,41(12):1674-1678. |
[5] |
VASSEN R, CAO X Q, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings[J]. J Am Ceram Soc, 2000,83(8):2023-2028.
DOI URL |
[6] |
SICKAFUS K E, MINERVINI L, GRIMES R W, et al. Radiation tolerance of complex oxides[J]. Science, 2000,289(5480):748-751.
DOI URL |
[7] | 刘占国. A2Zr2O7型稀土锆酸盐材料的组织结构与物理性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. |
[8] |
MICHEL D, PEREZYJ M, COLLONGUES R. Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phases (1-x)ZrO2-xLn2O3[J]. Mater Res Bull, 1974,9(11):1457-1468.
DOI URL |
[9] |
HARVEY E J, WHITTLE K R, LUMPKIN G R, et al. Solid solubilities of (La,Nd)2(Zr,Ti)2O7 phases deduced by neutron diffraction[J]. J Solid State Chem, 2004,178(3):800-810.
DOI URL |
[10] |
MANDAL B P, BANERJI A, SATHE V, et al. Order-disorder transition in Nd2-yGdyZr2O7 pyrochlore solid solution:an X-ray diffraction and raman spectroscopic study[J]. J Solid State Chem, 2007,180(10):2643-2648.
DOI URL |
[11] |
WHITTLE K R, CRANSWICK L M D, REDFERN S A T, et al. Lanthanum pyrochlores and the effect of yttrium addition in the systems La2-xYxZr2O7 and La2-xYxHf2O7[J]. J Solid State Chem, 2009,182(3):442-450.
DOI URL |
[12] |
CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 2004,24(1):1-10.
DOI URL |
[13] |
SURESH G, SEENIVASAN G, KRISHNAISH P, et al. Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum.[J]. J Nucl Mater, 1997,249:259-261.
DOI URL |
[14] |
XU C H, JIN H Y, ZHANG Q F, et al. A novel Co-ions complexation method to synthesize pyrochlore La2Zr2O7[J]. J Eur Ceram Soc, 2017,37(8):2871-2876.
DOI URL |
[15] |
LEHMANN H, PIETZER D, PRACHT G, et al. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system[J]. J Am Ceram Soc, 2003,86(8):1338-1344.
DOI URL |
[16] |
WU J, WEI X Z, PADTURE N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal barrier coating applications[J]. J Am Ceram Soc, 2002,85(12):3031-3035.
DOI URL |
[17] | SURESH G, SEENIVASAN G, KRISHNAIAH M V, et al. Investigation of the thermal conductivity of selected compounds of lanthanum,samarium and europium[J]. J Alloys Compd, 1998,269(1):9-12. |
[18] |
SCHELLING P K, PHILLPOT S R, GRIMES R W. Optimum pyrochlore compositions for low thermal conductivity[J]. Philos Mag Lett, 2004,84(2):127-137.
DOI URL |
[19] |
XU Q, PAN W, WANG J D, et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings[J]. J Am Ceram Soc, 2006,89(1):340-342.
DOI URL |
[20] |
XU Q, PAN W, WANG J D, et al. Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings[J]. Mater Lett, 2005,59(22):2804-2807.
DOI URL |
[21] |
XIANG J Y, CHEN S H, HUANG J H, et al. Phase structure and thermophysical properties of co-doped La2Zr2O7 ceramics for thermal barrier coatings[J]. Ceram Int, 2012,38(5):3607-3612.
DOI URL |
[22] |
ZHU D M, MILLER R A. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions[J]. J Therm Spray Technol, 2000,9(2):175-180.
DOI URL |
[23] | 孙现凯, 陈玉峰, 王广海, 等. 大气等离子喷涂Sm2Zr2O7热障涂层的隔热性能研究[J]. 稀有金属材料与工程, 2015,44(S1):735-739. |
[24] | ZHOU H M, YI D Q, YU Z M, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings[J]. J Alloys Compd,2007, 2007,438(1-2):217-221. |
[25] |
ZHU R B, ZOU J P, WANG D P, et al. X-ray diffractional,spectroscopic and thermo-physical properties analyses on Eu-doped lanthanum zirconate ceramic for thermal barrier coatings[J]. J Alloys Compd, 2018,746:62-67.
DOI URL |
[26] |
GUO L, GUO H B, PENG H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings[J]. J Eur Ceram Soc, 2014,34(5):1255-1263.
DOI URL |
[27] |
MA L, MA W M, SUN X D, et al. Microstructures and mechanical properties of Gd2Zr2O7/ZrO2(3Y) ceramics[J]. J Alloys Compd, 2015,644:416-422.
DOI URL |
[28] |
LEE K S, JUNG K I, HEO Y S, et al. Thermal and mechanical properties of sintered bodies and EB-PVD layers of Y2O3 added Gd2Zr2O7 ceramics for thermal barrier coatings[J]. J Alloys Compd, 2010,507(2):448-455.
DOI URL |
[29] |
WU H X, MA Z, LIU L, et al. Thermal cycling behavior and bonding strength of single-ceramic-layer Sm2Zr2O7 and double-ceramic-layer Sm2Zr2O7/8YSZ thermal barrier coatings deposited by atmospheric plasma spraying[J]. Ceram Int, 2016,42(11):12922-12927.
DOI URL |
[30] |
JIN G, FANG Y C, CUI X F, et al. Effect of YSZ fibers and carbon nanotubes on bonding strength and thermal cycling lifetime of YSZ-La2Zr2O7 thermal barrier coatings[J]. Surf Coat Technol, 2020,397:125986-125996.
DOI URL |
[31] |
ISLAM A, KUMAR K, PANDEY K K, et al. Exceptionally high fracture toughness of carbon nanotube reinforced plasma sprayed lanthanum zirconate coatings[J]. J Alloys Compd, 2019,777:1133-1144.
DOI URL |
[32] |
XU Z H, HE L M, CHEN X L, et al. Thermal cycling behavior of La2Zr2O7 coating with the addition of Y2O3 by EB-PVD[J]. J Alloys Compd, 2010,508(1):85-93.
DOI URL |
[33] |
LIU Z G, ZHANG W H, OUYANG J H, et al. Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying[J]. J Alloys Compd, 2015,647:438-444.
DOI URL |
[34] |
LASHMI P G, MAJITHIA S, SHWETHA V, et al. Improved hot corrosion resistance of plasma sprayed YSZ/Gd2Zr2O7 thermal barrier coating over single layer YSZ[J]. Mater Charact, 2019,147:199-206.
DOI URL |
[35] |
SCHULZ U, NOWOTNIK A, KUNKEL S, et al. Effect of processing and interface on the durability of single and bilayer 7YSZ/gadolinium zirconate EB-PVD thermal barrier coatings[J]. Surf Coat Technol, 2020,381:125107-125116.
DOI URL |
[36] |
MAHADE S, CURRY N, BJÖRKLUND S, et al. Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray[J]. Surf Coat Technol, 2015,283:329-336.
DOI URL |
[37] |
MAHADE S, CURRY N, BJÖRKLUND S, et al. Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue[J]. J Alloys Compd, 2016,689:1011-1019.
DOI URL |
[38] |
ZHANG H L, GUO L, MA Y, et al. Thermal cycling behavior of (Gd0.9Yb0.1)2Zr2O7/8YSZ gradient thermal barrier coatings deposited on Hf-doped NiAl bond coat by EB-PVD[J]. Surf Coat Technol, 2014,258:950-955.
DOI URL |
[39] |
WANG L, WANG Y, SUN X G, et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceram Int, 2012,38(5):3595-3606.
DOI URL |
[40] |
WANG C H, WANG Y, FAN S, et al. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying[J]. J Alloys Compd, 2015,649:1182-1190.
DOI URL |
[41] |
XU Z H, HE L M, MU R D, et al. Hot corrosion behavior of La2Zr2O7 with the addition of Y2O3 thermal barrier coatings in contacts with vanadate-sulfate salts[J]. J Alloys Compd, 2010,504(2):382-385.
DOI URL |
[42] |
BAHAMIRIAN M, HADAVI S M M, FARVIZI M, et al. Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating[J]. Surf Coat Technol, 2019,360:1-12.
DOI URL |
[43] |
LI M Z, CHENG Y X, GUO L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance[J]. J Eur Ceram Soc, 2017,37(10):3425-3434.
DOI URL |
[44] |
ZHANG C G, ZHAO J L, YANG L, et al. Preparation and corrosion resistance of nonstoichiometric lanthanum zirconate coatings[J]. J Eur Ceram Soc, 2020,40(8):3122-3128.
DOI URL |
[45] |
WANG R, DONG T S, WANG H D, et al. CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth[J]. Ceram Int, 2019,45(14):17409-17419.
DOI URL |
[1] | Liu Baoxia, Zhang Meng, Zhou Xuqiang, Niu Yunsong, Huang Di, Yang Qinqian, Bao Zebin, Zhu Shenglong. Process and bonding performance of ZrO2 thermal barrier coatings with vertical cracks by high energy plasma spraying [J]. Refractories, 2024, 58(4): 284-289. |
[2] | Wang Ruida, Zhao Shixian, Chen Liugang, Si Yaochen, Li Lingfeng, Li Hongxia, Liu Guanghua. Structure, properties and corrosion resistance of high entropy (Y0.2Gd0.2Dy0.2La0.2Sm0.2)TaO4 ceramic materials [J]. Refractories, 2023, 57(5): 417-422. |
[3] | Mai Haixiang, Zhao Fei, An Jiancheng, Wang Yali, Lian Weikang, Hu Yang, Ge Tiezhu, Liu Xinhong. Effect of heat-treatment temperature on crystal growth and structure of bauxite based mullite materials [J]. Refractories, 2023, 57(4): 314-319. |
[4] | Liu Tao, Ma Beiyue, Zan Wenyu. Research status of rare earth salt thermal barrier/environmental barrier coatings [J]. Refractories, 2023, 57(2): 175-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||