[1] 罗仙平,李建康,徐徽,等.电熔镁砂制备工艺及熔炼过程[J].盐业与化工,2016,45(8): 8-13. [2] LI Z,QU D L,LI J J,et al.Effect of different electrofusion processes on microstructure of fused magnesia[J].Refractories and Industrial Ceramics,2022,62(5):541-547. [3] 杨树,刘百宽,田晓利,等.川藏高纯电熔氧化镁制备及微观形貌[J].硅酸盐通报,2019,38(9):2777-2781+2787. [4] 王泽.基于卷积神经网络的图像超分辨率重建算法研究[D].兰州:兰州理工大学,2023. [5] 邹丹凤,刘星,蔡杰,等.基于改进卷积神经网络的电力设备红外图像分类识别方法[J].电力学报,2023,38(5):412-419. [6] 刘亚径,王兴东,朱青友,等.基于图像识别的耐火材料破损率计算方法研究[J].武汉科技大学学报,2022,45(1):37-45. [7] 任姿颖,宋宝宇.图像识别在材料研发中的应用与展望[J].鞍钢技术,2022,8(6):18-22. [8] 米晓希,汤爱涛,朱雨晨,等.机器学习技术在材料科学领域中的应用进展[J].材料导报,2021,35(15):15115-15124. [9] 佘以明,王鹏,游杰刚,等.四种电熔镁砂颗粒对镁碳砖性能的影响[J].耐火材料,2022,56(3):241-246. [10] 刘超,陈明伟,梁彤祥.矿物材料学[M].北京:化学工业出版社,2019. [11] 潘兆橹.结晶学及矿物学:下册[M].北京:地质出版社,1993. [12] TEK F B,AM L,KARl D.Adaptive convolution kernel for artificial neural networks[J].Journal of Visual Communication and Image Representation,2021,75(4):103015. [13] 文元美,余霆嵩,凌永权.基于边缘检测的卷积核数量确定方法[J].计算机应用研究,2018,35(11):3454-3457. [14] CHEN J Q.Image recognition technology based on neural network[J].Institute of Electrical and Electronics Engineers,2020,99(8):157161-157167. [15] CHENG F C,ZHANG H,FAN W J,et al.Image recognition technology based on deep learning[J].Wireless Personal Communications,2018,102(2):1917-1933. [16] MADURANGA K D G,ZADOROZHNYY V,YE Q.Symmetry-structured convolutional neural networks[J].Neural Computing & Applications,2023,35(6):4421-4434. [17] 温作林.基于深度学习的混凝土裂缝识别[D].浙江:浙江大学,2019. [18] LIU W,WEN Y,YU Z,et al.Large-margin softmax loss for convolutional neural networks[J].Journal of Machine Learning Research,2016,10(2):12-20. |