耐火材料 ›› 2021, Vol. 55 ›› Issue (3): 258-263.DOI: 10.3969/j.issn.1001-1935.2021.03.017
收稿日期:
2020-08-11
出版日期:
2021-06-15
发布日期:
2021-06-24
通讯作者:
李享成,男,1978年生,博士,副教授。E-mail: lixiangcheng@wust.edu.cn作者简介:
李迪:男,1996年生,硕士研究生。E-mail: 13577490907@163.com
基金资助:
Li Di(), Li Xiangcheng(
), Zhu Yingli, Chen Ping’an, Zhu Boquan
Received:
2020-08-11
Online:
2021-06-15
Published:
2021-06-24
Contact:
Li Xiangcheng
摘要:
稀土锆酸盐热障涂层材料具有耐高温、抗烧结、低导热、高温相结构稳定和抗腐蚀性能好等优点,被认为是最具有潜力的新型高温热障涂层材料体系之一。概述了目前关于这种热障涂层材料体系的晶体结构、物理性能、力学性能、抗热震性以及热腐蚀性等的研究进展,并进一步展望了稀土锆酸盐热障涂层材料的发展方向。
中图分类号:
李迪, 李享成, 朱颖丽, 陈平安, 朱伯铨. 稀土锆酸盐热障涂层材料的研究进展[J]. 耐火材料, 2021, 55(3): 258-263.
Li Di, Li Xiangcheng, Zhu Yingli, Chen Ping’an, Zhu Boquan. Research progress of rare-earth zirconate thermal barrier coatings[J]. Refractories, 2021, 55(3): 258-263.
原子 | 烧绿石结构 (Fd3m) | 萤石结构 (Fm3m) | 缺陷型萤石结构 (Fm3m) |
---|---|---|---|
L | 16d | 4a | 16c或16d |
Zr | 16c | 4a | 16c或16d |
O | 48f | 8c | 48f、8a或8b |
O' | 8b | — | 48f、8a或8b |
Vo | 8a | — | 48f、8a或8b |
表1 烧绿石结构、萤石结构与缺陷型萤石结构中原子分布位置[7]
原子 | 烧绿石结构 (Fd3m) | 萤石结构 (Fm3m) | 缺陷型萤石结构 (Fm3m) |
---|---|---|---|
L | 16d | 4a | 16c或16d |
Zr | 16c | 4a | 16c或16d |
O | 48f | 8c | 48f、8a或8b |
O' | 8b | — | 48f、8a或8b |
Vo | 8a | — | 48f、8a或8b |
材料 | 热导率/(W·m-1·K-1) | 热膨胀系数×106/K-1 | |
---|---|---|---|
La2Zr2O7 | 1.56(1 000 ℃)[ | 9.1(1 000 ℃)[ | |
1.30(1 100 ℃)[ | — | ||
1.15(1 450 ℃)[ | — | ||
Nd2Zr2O7 | 1.25(800 ℃)[ | 9.5(800 ℃)[ | |
Sm2Zr2O7 | 1.6(700 ℃)[ | — | |
1.5(1 100 ℃)[ | 10.8(1 200 ℃)[ | ||
Eu2Zr2O7 | 1.60(1 100 ℃)[ | — | |
Gd2Zr2O7 | 1.91(1 200 ℃)[ | 11.6(1 200 ℃)[ | |
Dy2Zr2O7 | 1.34(800 ℃)[ | 11.1(1 200 ℃)[ | |
Er2Zr2O7 | 1.49(800 ℃)[ | — | |
Yb2Zr2O7 | 1.58(800 ℃)[ | — |
表2 部分单一稀土锆酸盐材料的热物理性能
材料 | 热导率/(W·m-1·K-1) | 热膨胀系数×106/K-1 | |
---|---|---|---|
La2Zr2O7 | 1.56(1 000 ℃)[ | 9.1(1 000 ℃)[ | |
1.30(1 100 ℃)[ | — | ||
1.15(1 450 ℃)[ | — | ||
Nd2Zr2O7 | 1.25(800 ℃)[ | 9.5(800 ℃)[ | |
Sm2Zr2O7 | 1.6(700 ℃)[ | — | |
1.5(1 100 ℃)[ | 10.8(1 200 ℃)[ | ||
Eu2Zr2O7 | 1.60(1 100 ℃)[ | — | |
Gd2Zr2O7 | 1.91(1 200 ℃)[ | 11.6(1 200 ℃)[ | |
Dy2Zr2O7 | 1.34(800 ℃)[ | 11.1(1 200 ℃)[ | |
Er2Zr2O7 | 1.49(800 ℃)[ | — | |
Yb2Zr2O7 | 1.58(800 ℃)[ | — |
[1] |
MILLER R A. Thermal barrier coatings for aircraft engines:history and directions[J]. J Therm Spray Technol, 1997,6(1):35-42.
DOI URL |
[2] | 孙方红, 马壮, 刘应瑞, 等. 等离子喷涂陶瓷涂层降低孔隙率的研究进展[J]. 硅酸盐通报, 2013,32(11):2274-2280. |
[3] |
CAO X Q, VASSEN R, JUNGEN W, et al. Thermal stability of lanthanum zirconate plasma-sprayed coating[J]. J Am Ceram Soc, 2001,84(9):2086-2090.
DOI URL |
[4] | 张小锋, 周克崧, 宋进兵, 等. 黏结层粗糙度对热障涂层高温氧化及力学性能的影响[J]. 硅酸盐学报, 2013,41(12):1674-1678. |
[5] |
VASSEN R, CAO X Q, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings[J]. J Am Ceram Soc, 2000,83(8):2023-2028.
DOI URL |
[6] |
SICKAFUS K E, MINERVINI L, GRIMES R W, et al. Radiation tolerance of complex oxides[J]. Science, 2000,289(5480):748-751.
DOI URL |
[7] | 刘占国. A2Zr2O7型稀土锆酸盐材料的组织结构与物理性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. |
[8] |
MICHEL D, PEREZYJ M, COLLONGUES R. Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phases (1-x)ZrO2-xLn2O3[J]. Mater Res Bull, 1974,9(11):1457-1468.
DOI URL |
[9] |
HARVEY E J, WHITTLE K R, LUMPKIN G R, et al. Solid solubilities of (La,Nd)2(Zr,Ti)2O7 phases deduced by neutron diffraction[J]. J Solid State Chem, 2004,178(3):800-810.
DOI URL |
[10] |
MANDAL B P, BANERJI A, SATHE V, et al. Order-disorder transition in Nd2-yGdyZr2O7 pyrochlore solid solution:an X-ray diffraction and raman spectroscopic study[J]. J Solid State Chem, 2007,180(10):2643-2648.
DOI URL |
[11] |
WHITTLE K R, CRANSWICK L M D, REDFERN S A T, et al. Lanthanum pyrochlores and the effect of yttrium addition in the systems La2-xYxZr2O7 and La2-xYxHf2O7[J]. J Solid State Chem, 2009,182(3):442-450.
DOI URL |
[12] |
CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 2004,24(1):1-10.
DOI URL |
[13] |
SURESH G, SEENIVASAN G, KRISHNAISH P, et al. Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum.[J]. J Nucl Mater, 1997,249:259-261.
DOI URL |
[14] |
XU C H, JIN H Y, ZHANG Q F, et al. A novel Co-ions complexation method to synthesize pyrochlore La2Zr2O7[J]. J Eur Ceram Soc, 2017,37(8):2871-2876.
DOI URL |
[15] |
LEHMANN H, PIETZER D, PRACHT G, et al. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system[J]. J Am Ceram Soc, 2003,86(8):1338-1344.
DOI URL |
[16] |
WU J, WEI X Z, PADTURE N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal barrier coating applications[J]. J Am Ceram Soc, 2002,85(12):3031-3035.
DOI URL |
[17] | SURESH G, SEENIVASAN G, KRISHNAIAH M V, et al. Investigation of the thermal conductivity of selected compounds of lanthanum,samarium and europium[J]. J Alloys Compd, 1998,269(1):9-12. |
[18] |
SCHELLING P K, PHILLPOT S R, GRIMES R W. Optimum pyrochlore compositions for low thermal conductivity[J]. Philos Mag Lett, 2004,84(2):127-137.
DOI URL |
[19] |
XU Q, PAN W, WANG J D, et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings[J]. J Am Ceram Soc, 2006,89(1):340-342.
DOI URL |
[20] |
XU Q, PAN W, WANG J D, et al. Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings[J]. Mater Lett, 2005,59(22):2804-2807.
DOI URL |
[21] |
XIANG J Y, CHEN S H, HUANG J H, et al. Phase structure and thermophysical properties of co-doped La2Zr2O7 ceramics for thermal barrier coatings[J]. Ceram Int, 2012,38(5):3607-3612.
DOI URL |
[22] |
ZHU D M, MILLER R A. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions[J]. J Therm Spray Technol, 2000,9(2):175-180.
DOI URL |
[23] | 孙现凯, 陈玉峰, 王广海, 等. 大气等离子喷涂Sm2Zr2O7热障涂层的隔热性能研究[J]. 稀有金属材料与工程, 2015,44(S1):735-739. |
[24] | ZHOU H M, YI D Q, YU Z M, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings[J]. J Alloys Compd,2007, 2007,438(1-2):217-221. |
[25] |
ZHU R B, ZOU J P, WANG D P, et al. X-ray diffractional,spectroscopic and thermo-physical properties analyses on Eu-doped lanthanum zirconate ceramic for thermal barrier coatings[J]. J Alloys Compd, 2018,746:62-67.
DOI URL |
[26] |
GUO L, GUO H B, PENG H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings[J]. J Eur Ceram Soc, 2014,34(5):1255-1263.
DOI URL |
[27] |
MA L, MA W M, SUN X D, et al. Microstructures and mechanical properties of Gd2Zr2O7/ZrO2(3Y) ceramics[J]. J Alloys Compd, 2015,644:416-422.
DOI URL |
[28] |
LEE K S, JUNG K I, HEO Y S, et al. Thermal and mechanical properties of sintered bodies and EB-PVD layers of Y2O3 added Gd2Zr2O7 ceramics for thermal barrier coatings[J]. J Alloys Compd, 2010,507(2):448-455.
DOI URL |
[29] |
WU H X, MA Z, LIU L, et al. Thermal cycling behavior and bonding strength of single-ceramic-layer Sm2Zr2O7 and double-ceramic-layer Sm2Zr2O7/8YSZ thermal barrier coatings deposited by atmospheric plasma spraying[J]. Ceram Int, 2016,42(11):12922-12927.
DOI URL |
[30] |
JIN G, FANG Y C, CUI X F, et al. Effect of YSZ fibers and carbon nanotubes on bonding strength and thermal cycling lifetime of YSZ-La2Zr2O7 thermal barrier coatings[J]. Surf Coat Technol, 2020,397:125986-125996.
DOI URL |
[31] |
ISLAM A, KUMAR K, PANDEY K K, et al. Exceptionally high fracture toughness of carbon nanotube reinforced plasma sprayed lanthanum zirconate coatings[J]. J Alloys Compd, 2019,777:1133-1144.
DOI URL |
[32] |
XU Z H, HE L M, CHEN X L, et al. Thermal cycling behavior of La2Zr2O7 coating with the addition of Y2O3 by EB-PVD[J]. J Alloys Compd, 2010,508(1):85-93.
DOI URL |
[33] |
LIU Z G, ZHANG W H, OUYANG J H, et al. Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying[J]. J Alloys Compd, 2015,647:438-444.
DOI URL |
[34] |
LASHMI P G, MAJITHIA S, SHWETHA V, et al. Improved hot corrosion resistance of plasma sprayed YSZ/Gd2Zr2O7 thermal barrier coating over single layer YSZ[J]. Mater Charact, 2019,147:199-206.
DOI URL |
[35] |
SCHULZ U, NOWOTNIK A, KUNKEL S, et al. Effect of processing and interface on the durability of single and bilayer 7YSZ/gadolinium zirconate EB-PVD thermal barrier coatings[J]. Surf Coat Technol, 2020,381:125107-125116.
DOI URL |
[36] |
MAHADE S, CURRY N, BJÖRKLUND S, et al. Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray[J]. Surf Coat Technol, 2015,283:329-336.
DOI URL |
[37] |
MAHADE S, CURRY N, BJÖRKLUND S, et al. Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue[J]. J Alloys Compd, 2016,689:1011-1019.
DOI URL |
[38] |
ZHANG H L, GUO L, MA Y, et al. Thermal cycling behavior of (Gd0.9Yb0.1)2Zr2O7/8YSZ gradient thermal barrier coatings deposited on Hf-doped NiAl bond coat by EB-PVD[J]. Surf Coat Technol, 2014,258:950-955.
DOI URL |
[39] |
WANG L, WANG Y, SUN X G, et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceram Int, 2012,38(5):3595-3606.
DOI URL |
[40] |
WANG C H, WANG Y, FAN S, et al. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying[J]. J Alloys Compd, 2015,649:1182-1190.
DOI URL |
[41] |
XU Z H, HE L M, MU R D, et al. Hot corrosion behavior of La2Zr2O7 with the addition of Y2O3 thermal barrier coatings in contacts with vanadate-sulfate salts[J]. J Alloys Compd, 2010,504(2):382-385.
DOI URL |
[42] |
BAHAMIRIAN M, HADAVI S M M, FARVIZI M, et al. Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating[J]. Surf Coat Technol, 2019,360:1-12.
DOI URL |
[43] |
LI M Z, CHENG Y X, GUO L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance[J]. J Eur Ceram Soc, 2017,37(10):3425-3434.
DOI URL |
[44] |
ZHANG C G, ZHAO J L, YANG L, et al. Preparation and corrosion resistance of nonstoichiometric lanthanum zirconate coatings[J]. J Eur Ceram Soc, 2020,40(8):3122-3128.
DOI URL |
[45] |
WANG R, DONG T S, WANG H D, et al. CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth[J]. Ceram Int, 2019,45(14):17409-17419.
DOI URL |
[1] | 刘保侠, 张盟, 周绪强, 牛云松, 黄迪, 杨沁乾, 鲍泽斌, 朱圣龙. 高能等离子喷涂垂直裂纹氧化锆热障涂层工艺及结合性能研究[J]. 耐火材料, 2024, 58(4): 284-289. |
[2] | 王瑞达, 赵世贤, 陈留刚, 司瑶晨, 李凌锋, 李红霞, 刘广华. (Y0.2Gd0.2Dy0.2La0.2Sm0.2)TaO4高熵陶瓷材料的结构、性能及抗侵蚀行为研究[J]. 耐火材料, 2023, 57(5): 417-422. |
[3] | 麦海香, 赵飞, 安建成, 王亚利, 连伟康胡杨, 葛铁柱, 刘新红. 热处理温度对矾土基莫来石材料结构及晶体生长的影响[J]. 耐火材料, 2023, 57(4): 314-319. |
[4] | 刘涛, 马北越, 昝文宇. 稀土盐类热障/环境障涂层研究现状[J]. 耐火材料, 2023, 57(2): 175-179. |
[5] | 刘 坤 ,高帅波, 仇 知, 郭静霓, 邢鹏飞, 闫 姝, 冯忠宝, 都兴红. 利用晶体硅砂浆切割废料原位合成高品质SiC/B4C复合陶瓷粉[J]. , 2020, 54(1): 5-9. |
[6] | 梁志瑜, 颜桂炀, 郑柳萍, 许美真. 利用废催化裂化平衡剂和工业Al2O3合成莫来石[J]. , 2014, 48(3): 211-213. |
[7] | 刘树信 王海滨. 稀土Gd添加氧化锆的物相分析[J]. , 2011, 45(5): 341-0. |
[8] | 云斯宁. 蒋明学. 李勇. 刘建龙. . AlON陶瓷材料的结构、性质及应用 [J]. , 2003, 37(3): 173-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||