耐火材料 ›› 2021, Vol. 55 ›› Issue (3): 251-257.DOI: 10.3969/j.issn.1001-1935.2021.03.016
收稿日期:
2020-12-10
出版日期:
2021-06-15
发布日期:
2021-06-24
通讯作者:
肖国庆,男,1967年生,博士,教授。E-mail: xiaoguoqing@xauat.edu.cn作者简介:
杨守磊:男, 1984年生,博士,讲师。E-mail: yangsl@edu.cn
基金资助:
Yang Shoulei1,3)(), Ding Donghai2), Xiao Guoqing2)(
)
Received:
2020-12-10
Online:
2021-06-15
Published:
2021-06-24
Contact:
Xiao Guoqing
摘要:
总结了国内外采用表面活性剂、造粒、表面涂层等技术将传统碳材料(主要是鳞片石墨)改性优化后应用于耐火浇注料的研究进展,阐述了其工艺特点及目前存在的问题。还介绍了近年来微/纳米碳材料应用于含碳耐火浇注料的研究现状,分析了阻碍微/纳米碳材料应用于含碳耐火浇注料的原因。
中图分类号:
杨守磊, 丁冬海, 肖国庆. 含碳耐火浇注料的研究现状[J]. 耐火材料, 2021, 55(3): 251-257.
Yang Shoulei, Ding Donghai, Xiao Guoqing. Research status of carbon-containing refractory castables[J]. Refractories, 2021, 55(3): 251-257.
[1] |
LEE W E, VIEIRA W, ZHANG S, et al. Castable refractory concretes[J]. International Materials Reviews, 2001,46(3):145-167.
DOI URL |
[2] |
YANG D X, LIU Y G, FANG M H, et al. Study on the slag corrosion resistance of unfired Al2O3-SiC/β-Sialon/Ti(C,N)-C refractories[J]. Ceramics International, 2014,40(1):1593-1598.
DOI URL |
[3] |
LI X C, LI Y X, CHEN L F, et al. Matrix structure evolution and thermo-mechanical properties of carbon fiber-reinforced Al2O3-SiC-C castable composites[J]. Materials Research Bulletin, 2015,61:201-206.
DOI URL |
[4] | GOGTAS C, LOPEZ H F, SOBOLEV K. Role of cement content on the properties of self-flowing Al2O3 refractory castables[J]. Journal of the American Ceramic Society, 2014,34(5):1365-1373. |
[5] |
KUMAR V, SINGH V, SRIVASTAVA A. Low temperature synjournal of high alumina cements by novel co-melt precursors and their implementation as castables with some micro fine additives[J]. Journal of the American Ceramic Society, 2013,96(7):2124-2131.
DOI URL |
[6] | 任俊, 卢寿兹. 亲水性及疏水性颗粒在水中的分散行为研究[J]. 中国粉体技术, 1999,5(2):6-9. |
[7] |
PARUCHURI V K, NGUYEN A V, MILLER J D. Zeta-potentials of self-assembled surface micelles of ionic surfactants adsorbed at hydrophobic graphite surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004,250(1/3):519-526.
DOI URL |
[8] | 王丽丽, 于锦, 李正元. 分散剂对石墨水悬浮液分散性能的影响[J]. 新型炭材料, 2016,31(1):92-96. |
[9] | 陈云, 冯其明, 张国范, 等. 微细鳞片石墨分散性[J]. 中南大学学报(自然科学版), 2004,35(6):955-959. |
[10] | 朱伯铨, 管红梅, 刘文超. 以表面活性剂改善水对鳞片石墨的润湿性研究[J]. 武汉冶金科技大学学报(自然科学版), 1999,22(3):242-244. |
[11] | OLIVEIRAT I R, SALOMÃ O R, PANDOLFELLI V C, et al. High-carbon-content refractory castables[J]. American Ceramic Society Bulletin, 2003,82(10):9501-9508. |
[12] | KANDEL M, ZHOU N S, RIGAUD M, et al. Use of micro-pellets of graphite in Al2O3-SiC-C castables[C]// 9th Internation symposium on industry ceramics,Italy, 1998. |
[13] | ZHOU N S. Elaboration of aluminum oxide-based graphite containing castables[D]. Montreal:Université de Montréal, 2000. |
[14] | PALCO S, HE H, PARANSKY E, et al. The challenges of adding natural graphite into castables[J]. Interceram:Int Ceram Rev, 2005: 16-19. |
[15] | 张艳利. 钢包用含碳浇注料的研制[J]. 耐火材料, 2010,44(2):84. |
[16] | KITAHARA A, EMA T, KOBAYASHI K, et al. Graphite granulated product for amorphous refractory:JP03088878[P]. 1991-04-15. |
[17] |
SHARIF S, GOLESTANI-FARD F, SARPOOLAKY H. Improvement of water/resin wettability of graphite using carbon black nano particles coating via ink media[J]. Journal of Alloys and Compounds, 2009,482(1):361-365.
DOI URL |
[18] |
YOSHIMATSU H, FUJIWARA S, KONISHI R, et al. Wettability by water and oxidation resistance of alumina-coated graphite powder[J]. Journal of the Ceramic Society of Japan, 1995,103(9):929-934.
DOI URL |
[19] |
KAWABATA K, YOSHIMATSU H, FUJII E, et al. Effect of Al2O3 raw materials on fluidity of Al2O3-coated graphite powder slurry[J]. Journal of the Ceramic Society of Japan, 2001,109(5):470-473.
DOI URL |
[20] |
YILMAZ S, KUTMEN-KALPAKLI Y, YILMAZ E. Synjournal and characterization of boehmitic alumina coated graphite by sol-gel method[J]. Ceramics International, 2009,35(5):2029-2034.
DOI URL |
[21] |
ZHANG S W, LEE W E. Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings[J]. Journal of the European Ceramic Society, 2003,23(8):1215-1221.
DOI URL |
[22] |
YU J, UENO S, HIRAGUSHI K. Improvement in flowability,oxidation resistance and water wettability of graphite powders by TiO2 coating[J]. Journal of the Ceramic Society of Japan, 1996,104(4):481-485.
DOI URL |
[23] |
SUNWOO S, KIM J H, LEE K G, et al. Preparation of ZrO2 coated graphite powders[J]. Journal of Materials Science, 2000,35(14):3677-3680.
DOI URL |
[24] | WANG R, HASHIMOTO K, FUJISHIMA A, et al. Light-induced amphiphilic surfaces[J]. Nature:International Weekly Journal of Science, 1997,388(6641):431-432. |
[25] |
MENG B, PENG J H. Effects of in-situ synthesized mullite whiskers on flexural strength and fracture toughness of corundum-mullite refractory materials[J]. Ceramics International, 2013,39(2):1525-1531.
DOI URL |
[26] |
QIN H B, LI H X, WANG J D, et al. Influence of spinel on the fracture energy of refractory castable[J]. Materials Science Forum, 2013, 745-746:632-635.
DOI URL |
[27] |
SABERI A, GOLESTANI-FARD F, SARPOOLAKY H, et al. Development of MgAl2O4 spinel coating on graphite surface to improve its water-wettability and oxidation resistance[J]. Ceramics International, 2009,35(1):457-461.
DOI URL |
[28] |
MUKHOPADHYAY S, DUTTA S, ANSAR S A, et al. Spinel-coated graphite for carbon containing refractory castables[J]. Journal of the American Ceramic Society, 2009,92(8):1895-1900.
DOI URL |
[29] |
MUKHOPADHYAY S. Improved sol-gel spinel (MgAl2O4) coatings on graphite for application in carbon containing high alumina castables[J]. Journal of Sol-Gel Science and Technology, 2010,56(1):66-74.
DOI URL |
[30] |
ANSAR S A, BHATTACHARYA S, DUTTA S, et al. Development of mullite and spinel coatings on graphite for improved water-wettability and oxidation resistance[J]. Ceramics International, 2010,36(6):1837-1844.
DOI URL |
[31] |
MUKHOPADHYAY S, ANSAR S A, PAUL D, et al. Characteristics of refractory castablescontaining mullite and spinel coated graphites[J]. Materials and Manufacturing Processes, 2012,27(2):177-184.
DOI URL |
[32] | MUKHOPADHYAY S, PAUL D, BHOWMICK G, et al. Mullite coatings on graphite for application in carbon containing monolithic refractory[J]. Industrial Ceramics, 2011,31(2):129-136. |
[33] |
DUTTA S, DAS P, DAS A, et al. Significant improvement of refractoriness of Al2O3-C castables containing calcium aluminate nano-coatings on graphite[J]. Ceramics International, 2014,40(3):4407-4414.
DOI URL |
[34] |
MUKHOPADHYAY S, DAS G, BISWAS I. Nanostructured cementitious sol-gel coating on graphite for application in monolithic refractory composites[J]. Ceramics International, 2012,38(2):1717-1724.
DOI URL |
[35] |
MUKHOPADHYAY S, DUTTA S. Comparison of solid state and sol-gel derived calcium aluminate coated graphite and characterization of prepared refractory composite[J]. Ceramics International, 2012,38(6):4997-5006.
DOI URL |
[36] |
MUKHOPADHYAY S. Nanoscale calcium aluminate coated graphite for improved performance of alumina based monolithic refractory composite[J]. Materials Research Bulletin, 2013,48(7):2583-2588.
DOI URL |
[37] |
MUKHOPADHYAY S, MONDAL C, CHAKRABORTY A, et al. In depth studies on cementitious nanocoatings on graphite for its contribution in corrosion resistance of alumina based refractory composite[J]. Ceramics International, 2015,41(9):11999-12010.
DOI URL |
[38] |
HUANG J F, DENG F, CAO L Y, et al. Influence of infiltration additives on the phase Influence of infiltration additives on the phase,microstructure and oxidation resistance of SiC coating for graphite materials[J]. Key Engineering Materials, 2007, 336-338:1756-1758.
DOI URL |
[39] |
ALIAKBARPOUR S, ZAKERI M, RAHIMIPOUR M R, et al. Effect of SiC-mullite coatings on oxidation resistance of graphite[J]. Advances in Applied Ceramics, 2014,113(6):358-361.
DOI URL |
[40] |
MASOUDIFAR S, BAVAND-VANDCHALI M, GOLESTANI-FARD F, et al. Molten salt synjournal of a SiC coating on graphite flakes for application in refractory castables[J]. Ceramics International, 2016,42(10):11951-11957.
DOI URL |
[41] |
YE J K, ZHANG S W, LEE W E. Molten salt synjournal and characterization of SiC coated carbon black particles for refractory castable applications[J]. Journal of the European Ceramic Society, 2013,33(10):2023-2029.
DOI URL |
[42] |
YE J K, ZHANG S W, LEE W E. Novel low temperature synjournal and characterisation of hollow silicon carbide spheres[J]. Microporous and Mesoporous Materials, 2012,152:25-30.
DOI URL |
[43] |
DING J, DENG C J, YUAN W J, et al. Novel synjournal and characterization of silicon carbide nanowires on graphite flakes[J]. Ceramics International, 2014,40(3):4001-4007.
DOI URL |
[44] |
ZHANG S W, LEE W E. Carbon containing castables:current status and future prospects[J]. British Ceramic Transactions, 2002,101(1):1-8.
DOI URL |
[45] |
LIU X G, WANG Z F, ZHANG S W. Molten salt synjournal and characterization of titanium carbide-coated graphite flakes for refractory castable applications[J]. International Journal of Applied Ceramic Technology, 2011,8(4):911-919.
DOI URL |
[46] |
LIU X, ZHANG S W. Low-temperature preparation of titanium carbide coatings on graphite flakes from molten salts[J]. Journal of the American Ceramic Society, 2008,91(2):667-670.
DOI URL |
[47] | 丁军, 邓承继, 张小军, 等. 熔盐介质中石墨表面碳化钛包覆的研究[J]. 功能材料, 2014,45(3):66-69. |
[48] | YE J K. Preparation and characterisation of novel carbon materials for refractory castable applications[D]. Sheffield:University of Sheffield, 2014. |
[49] |
LEE W E, ZHANG SW. Melt corrosion of oxide and oxide-carbon refractories[J]. International Materials Reviews, 1999,44(3):77-104.
DOI URL |
[50] |
ZOU Y, GU H Z, HUANG A, et al. Effects of MgO micropowder on microstructure and resistance coefficient of Al2O3-MgO castable matrix[J]. Ceramics International, 2014,40(5):7023-7028.
DOI URL |
[51] | 江泓. Al2O3-SiC-C出铁沟浇注料抗氧化性能提高的新进展[J]. 江苏陶瓷, 2005,38(6):7-11. |
[52] | 李赛赛, 王军凯, 段红娟, 等. 水热碳化制备碳微球及其在Al2O3-SiC-C浇注料中的应用[J]. 硅酸盐学报, 2018,46(3):341-346. |
[53] |
LI S S, LIU J H, WANG J K, et al. Fabrication of graphitic carbon spheres and their application in Al2O3-SiC-C refractory castables[J]. International Journal of Applied Ceramic Technology, 2018,15(5):1166-1181.
DOI URL |
[54] |
LI S S, LIU J H, WANG J K, et al. Catalytic preparation of graphitic carbon spheres for Al2O3-SiC-C castables[J]. Ceramics International, 2018,44(11):12940-12947.
DOI URL |
[55] | 熊鑫. 石墨烯/氧化铝复合粉体的制备及其在浇注料中的应用[D]. 武汉:武汉科技大学, 2013. |
[56] | 肖国庆, 石佳佳, 丁冬海. 含碳铝酸钙粉体的燃烧合成及其微观表征[J]. 硅酸盐学报, 2018,46(6):829-936. |
[57] | 石佳佳. 燃烧合成制备含碳铝酸钙粉体及其机理研究[D]. 西安:西安建筑科技大学, 2018. |
[58] | 李盼盼, 肖国庆, 丁冬海, 等. 烧结法制备炭黑/铝酸钙水泥及其结合耐火浇注料的性能[J]. 硅酸盐学报, 2019,47(3):403-411. |
[59] | 雷紫涵, 肖国庆, 丁冬海, 等. 埋碳烧结法制备碳/铝酸钙复合粉体及其微观表征[J]. 材料导报, 2018,32(22):3862-3867. |
[60] | XIAO G Q, YANG S L, DING D H, et al. One-step synjournal of in-situ carbon-containing calcium aluminate cement as binders for refractory castables[J]. Ceramics International, 2018(44):15378-15384. |
[61] |
DING D H, YANG S L, XIAO G Q, et al. One-step synjournal of in-situ nanocarbon-containing calcium aluminate cement in reducing atmosphere[J]. International Journal of Applied Ceramic Technology, 2019,16(4):1416-1424
DOI URL |
[62] | DING D H, YANG S L, XIAO G Q, et al. Investigation on the properties of Al2O3-MgO refractory castables bonded by in-situ carbon-containing calcium aluminate cement[J]. Materials Research Express, 2018,5(9):1-9. |
[63] |
YANG S L, XIAO G Q, DING D H, et al. Improved corrosion resistance of Al2O3-SiC-C castables through in situ carbon containing aluminate cement as binder[J]. International Journal of Applied Ceramic Technology, 2020,17(3):1044-1051.
DOI URL |
[64] |
YANG S L, XIAO G Q, DING D H, et al. Effect of in-situ carbon containing calcium aluminate cement on properties of Al2O3-SiC-C based trough castables[J]. Journal of Asian Ceramic Societies, 2020,8(1):162-169.
DOI URL |
[1] | 李莹, 汪涤, 赵莉, 尹艺程, 贾全利. 石墨类型对Al2O3-MgO浇注料性能的影响[J]. 耐火材料, 2024, 58(4): 323-328. |
[2] | 何维祥, 罗明, 何亮, 柯极峰. 高精炼比模式下钢包渣线镁碳砖的研制及应用[J]. 耐火材料, 2024, 58(3): 234-237. |
[3] | 孟红涛, 马龙斌, 刘鑫. 预氧化对焦炉用氮化物结合碳化硅材料抗氧化性的影响[J]. 耐火材料, 2024, 58(3): 242-245. |
[4] | 邹鑫, 肖学平, 宋雅楠, 陈平安, 朱颖丽, 李享成. B4C添加量对Al2O3-C材料性能的影响[J]. 耐火材料, 2023, 57(4): 310-313. |
[5] | 吕思维, 李明晖, 倪薇, 童胜利, 陈若愚, 李赛赛, 李灿华. 锂辉石粒度对Al2O3-SiC-C浇注料性能的影响[J]. 耐火材料, 2023, 57(4): 337-342. |
[6] | 龙图, 顾华志, 张美杰, 黄奥, 邱文冬. 钛铁渣加入量对Al2O3-SiC-C铁沟浇注料性能的影响[J]. 耐火材料, 2023, 57(4): 351-355. |
[7] | 贺远航, 钱凡, 郭海荣, 李化龙, 路跃, 刘国齐, 李红霞. h-BN在耐火材料和冶金用高温陶瓷中的应用进展[J]. 耐火材料, 2023, 57(4): 360-364. |
[8] | 周瑞琪, 范慧琳, 王智明, 蔡伟杰, 段红娟, 张海军. 水热法制备氢氧化镁改性鳞片石墨[J]. 耐火材料, 2023, 57(2): 117-120. |
[9] | 牛世程, 吴吉光, 梁鹏鹏, 相宇博, 郑翰, 卜相娟, 罗天. BN微粉加入量对Si3N4-BN复合材料高温抗氧化性的影响[J]. 耐火材料, 2022, 56(6): 495-498. |
[10] | 曹济源, 马北越, 王露露, 李广明, 刘永利, 宋娜, 田剑. Al2O3、SiO2质量比对Al2O3-SiO2-MgO复合粉体电绝缘性能的影响[J]. 耐火材料, 2022, 56(5): 396-399. |
[11] | 蔡伟杰, 李亚格, 张鑫, 郭俊艳, 段红娟, 张海军. 鳞片石墨表面改性研究进展[J]. 耐火材料, 2022, 56(5): 447-451. |
[12] | 王佳平, 朱冲, 吴吉光, 黄志刚, 吕春江. 几种碳化硅耐火材料在高温水蒸气中的抗氧化性能比较[J]. 耐火材料, 2022, 56(4): 351-355. |
[13] | 蔡伏玲, 韩兵强, 陈俊峰, 苗正, 王义龙. 添加Ti3AlC2对MgO-C材料性能的影响[J]. 耐火材料, 2022, 56(3): 193-196. |
[14] | 付云鹤, 夏春玲, 牛峥, 穆元冬, 郝占宏, 叶国田. 低掺量红柱石粉对Al2O3-SiC-C浇注料性能的影响[J]. 耐火材料, 2022, 56(3): 210-213. |
[15] | 段红娟, 蔡伟杰, 张浩, 李发亮, 张海军. 水热法制备碱式硫酸镁/氢氧化镁改性膨胀石墨[J]. 耐火材料, 2021, 55(6): 461-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||