[1] 刘达.高熵过渡金属硼化物粉体制备[D].广州:华南理工大学,2020. [2] MA T,ZHU P W,YU X H.Progress in functional studies of transition metal borides[J].Chinese Physics B,2021,30(10):108103. [3] 陶强,马帅领,崔田,等.过渡金属硼化物的结构与性质[J].物理学报,2017,66(3):85-99. [4] SI J J,YU J Q,LAN H H,et al.Chemical potential-modulated ultrahigh-phase-purity growth of ultrathin transition-metal boride single crystals[J].Journal of the American Chemical Society,2023,145(7):3994-4002. [5] KNAPPSCHNEIDER A,LITTERSCHEID C,DZIVENKO D,et al.Possible superhardness of CrB4[J].Inorganic Chemistry,2013,52(2):540-542. [6] WELHAM N J.Formation of nanometric TiB2 from TiO2[J].Journal of the American Ceramic Society,2000,83(5):1290-1292. [7] SHAHRIARI M,ZAKERI M,RAZAVI M,et al. Magnesiothermic synthesis of HfB2-HfC-SiC nanocomposite by spark plasma technique[J].Ceramics International,2021,47(2):2172-2179. [8] WEI T T,LIU Z T,REN D L,et al.Low temperature synthesis of TaB2 nanorods by molten-salt assisted borothermal reduction[J].Journal of the American Ceramic Society,2018,101(1):45-49. [9] 王晓玲,王周福,王玺堂,等.熔盐法合成二硼化钛纳米粉体研究[J].人工晶体学报,2014,43(5):1247-1251. [10] BAO K,WEN Y,KHANGKHAMANO M,et al.Low-temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt[J].Journal of the American Ceramic Society,2017,100(5):2266-2272. [11] 刘德磊.微波熔盐法合成过渡金属(IVB~VIB)硼化物固溶体研究[D].武汉:武汉科技大学,2022. [12] WANG Y,YANG L X,LIU R J,et al.Molten salt synthesis of orthorhombic CrB and Cr2AlB2 ceramics[J].Ceramics International,2021,47(22):31772-31779. [13] ZHOU Y Z,ZHU Q Q,XU L,et al.Effects of group-VB transition metals diborides substitution on HfB2-based ceramics[J].Journal of the European Ceramic Society,2023,43(3):739-747. [14] LIU D,FU Q G,CHU Y H.Molten salt synthesis,formation mechanism,and oxidation behavior of nanocrystalline HfB2 powders[J].Journal of Advanced Ceramics,2020,9(1):35-44. [15] TIAN X K,ZHOU C J,ZHANG L,et al.Preparation of ZrB2-ZrO2-SiC composite powder by carbothermal reduction from zircon[J].China’s Refractories,2023,32(1):25-29. [16] LONG Y,LIU B,LIN S M,et al.Preparation of tungsten diboride by a combination of boro/carbothermal reduction process and spark plasma sintering[J].Journal of the European Ceramic Society,2022,42(13):5229-5237. [17] SONBER J K,MURTHY T S R C,SUBRAMANIAN C,et al.Investigations on synthesis of HfB2 and development of a new composite with TiSi2[J].International Journal of Refractory Metals and Hard Materials,2010,28(2):201-210. [18] LIU D L,JIAO B,ZHANG H J,et al.High-aspect-ratio single-crystalline (HfxZr(1-x))B2 micron-rods:low-temperature,highly-efficient synthesis and oriented growth mechanism[J].CrystEngComm,2022,24(24):4399-4407. [19] WEN T Q,NING S S,LIU D,et al.Synthesis and characterization of the ternary metal diboride solid-solution nanopowders[J].Journal of the American Ceramic Society,2019,102(8):4956-4962. [20] CSANÁDI T,AZIZPOUR A,VOJTKO M,et al.The effect of crystal anisotropy on fracture toughness and strength of ZrB2 microcantilevers[J].Journal of the American Ceramic Society,2024,107(3):1669-1681. [21] FENG L,FAHRENHOLTZ W G,HILMAS G E.Two-step synthesis process for high-entropy diboride powders[J].Journal of the American Ceramic Society,2020,103(2):724-730. [22] 刘国昂,王海龙,方成,等.B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J].无机材料学报,2024,39(6):697-706. [23] TANG Z Y,WEN Z H,LIU Y W,et al.Rapid experimental screening of high-entropy diborides for superior oxidation resistance[J].Advanced Functional Materials,2024,34(12):2312239. [24] LIU D,LIU H H,NING S S,et al.Chrysanthemum-like high-entropy diboride nanoflowers:A new class of high-entropy nanomaterials[J].Journal of Advanced Ceramics,2020,9(3):339-348. [25] GONG W L,WANG T Y,LUO W,et al.Synthesis and characterization of high-purity,high-entropy diboride ceramic powders by a liquid phase method[J].Materials,2023,16(23):7431. [26] GAO Y,HUANG L,TONG Z M,et al.Low-temperature synthesis of high-entropy (Hf0.2Ti0.2Mo0.2Ta0.2Nb0.2)B2 powders combined with theoretical forecast of its elastic and thermal properties[J].Journal of the American Ceramic Society,2022,105(10):6370-6383. [27] FENG L,FAHRENHOLTZ W G,HILMAS G E.Two-step synthesis process for high-entropy diboride powders[J].Journal of the American Ceramic Society,2020,103(2):724-730. [28] HE J F,ZENG Y,HUANG Z,et al.Low temperature-rapid preparation of HfB2-SiC powders by microwave/molten salt assisted boro/carbothermal reduction[J].Journal of the Ceramic Society of Japan,2021,129(8):528-534. [29] GOLLA B R,MUKHOPADHYAY A,BASU B,et al.Review on ultra-high temperature boride ceramics[J].Progress in Materials Science,2020,111:100651. [30] LI S L,SONG J X,CHE Y S,et al.Advances in molten salt synthesis of non-oxide materials[J].Energy & Environmental Materials,2023,6(2):e12339. [31] WANG Z,LIU X,XU B S,et al.Fabrication and properties of HfB2 ceramics based on micron and submicron HfB2 powders synthesized via carbo/borothermal reduction of HfO2 with B4C and carbon[J].International Journal of Refractory Metals and Hard Materials,2015,51:130-136. [32] LONG Y,ZHANG G H,LIN S M,et al.Microstructure and mechanical properties of WB2-B4C composites fabricated by boro/carbothermal reduction and SPS[J].Journal of the American Ceramic Society,2023,106(4):2539-2549. [33] MA H B,LIU H L,ZHAO J,et al.Pressureless sintering,mechanical properties and oxidation behavior of ZrB2 ceramics doped with B4C[J].Journal of the European Ceramic Society,2015,35(10):2699-2705. [34] FENG L,FAHRENHOLTZ W G,HILMAS G E,et al.Superhard single-phase (Ti,Cr)B2 ceramics[J].Journal of the American Ceramic Society,2022,105(8):5032-5038. [35] ZHANG W,ZHANG Y,GUO W M,et al.Powder synthesis,densification,microstructure and mechanical properties of Hf-based ternary boride ceramics[J].Journal of the European Ceramic Society,2021,41(7):3922-3928. [36] SILVESTRONI L,GILLI N,SANGIORGI A,et al.Multi-phase (Zr,Ti,Cr)B2 solid solutions:Preparation,multi-scale microstructure,and local properties[J].Journal of Advanced Ceramics,2023,12(2):414-431. [37] DEMIRSKYI D,SUZUKI T S,YOSHIMI K,et al.High-temperature reactive synthesis of the Zr-Ta multiboride with a supercomposite structure[J].Journal of the American Ceramic Society,2022,105(11):6989-7002. [38] JIN W L,PANG J,KOU Q,et al.Synthesis of a (Ti,Mo)B2 coating by electro-codeposition in NaCl-KCl-AlCl3-MoO3 melt containing TiB2 nanoparticles[J].Journal of the American Ceramic Society,2023,106(2):860-866. [39] MARUMO T,KOIDE N,ARAI Y,et al.Characterization of carbon fiber-reinforced ultra-high temperature ceramic matrix composites fabricated via Zr-Ti alloy melt infiltration[J].Journal of the European Ceramic Society,2022,42(13):5208-5219. [40] GILD J,KAUFMANN K,VECCHIO K,et al.Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics[J].Scripta Materialia,2019,170:106-110. [41] FENG L,MONTEVERDE F,FAHRENHOLTZ W G,et al.Superhard high-entropy AlB2-type diboride ceramics[J].Scripta Materialia,2021,199:113855. [42] NAUGHTON-DUSZOVÁ A,MEDVED D,DAKOVÁ L,et al.Highly wear resistant dual-phase (Ti-Zr-Nb-Hf-Ta)C/(Ti-Zr-Nb-Hf-Ta) B2 high-entropy ceramics[J].Advances in Applied Ceramics:Structural,Functional and Bioceramics,2023,122(3/4):107-118. [43] YANG Y,BI J Q,SUN K N,et al.Novel (Hf0.2Zr0.2Ta0.2V0.2Nb0.2)B2 high entropy diborides with superb hardness sintered by SPS under a mild condition[J].Ceramics International,2022,48(20):30859-30867. [44] 魏红康,邓翔宇,汪长安,等.反应热压烧结制备SiC/ZrB2复相陶瓷及其性能表征[J].人工晶体学报,2014,43(3):550-554. [45] 曾渊,梁峰,刘江昊,等.微波熔盐辅助硼热/碳热还原法制备ZrB2-SiC复合粉[J].机械工程材料,2018,42(4):31-34+57. [46] WANG H L,LEE S H,FENG L.The processing and properties of (Zr,Hf)B2-SiC nanostructured composites[J].Journal of the European Ceramic Society,2014,34(15):4105-4109. |