[1] |
乔华. 煤炭清洁高效利用发展的探讨[J]. 化工管理, 2018(30):113-114.
|
[2] |
朱龙雏, 王亦飞, 陆志峰, 等. 煤焦在气化合成气中高温气化反应特性[J]. 化工学报, 2017, 68(11):4249-4260.
|
[3] |
蔡斌利, 李红霞, 赵世贤, 等. 水煤浆气化炉中O2分压和Cr2O3稳定性的热力学计算[J]. 耐火材料, 2016, 50(6):411-415.
|
[4] |
李红霞, 孙红刚. 煤气化技术用耐火材料及发展趋势[J]. 耐火材料, 2018, 52(2):81-88.
|
[5] |
KWONG K, BENNETT J, NAKANO J. Gasifier refractories,coal slags,and their interaction[C]// Ninth International Conference on Molten Slags,Fluxes and Salts,Beijing, 2012:403-417.
|
[6] |
SAN M L, HIS C, SCHUMANN M. High performance refractories for gasification reactors[J]. Refractories World Forum, 2011, 3(4):95-100.
|
[7] |
KYEI SING K, BENNETT J, KRABBE R, et al. Engineered refractories for slagging gasifiers[J]. American Ceramic Society Bulletin, 2006, 85(2):17-20.
|
[8] |
TABER W A. Refractories for gasification[J]. Applications and News, 2003, 8(4):18-22.
|
[9] |
林伟宁, 梁钦锋, 刘海峰, 等. 水冷壁气化炉变工况温度及热应力分析[J]. 化工学报, 2009, 60(10):2568-2575.
|
[10] |
BENNETT J P, KWONG K S. Failure mechanisms in high chrome oxide gasifier refractories[J]. Metallurgical and Materials Transactions A, 2011, 42(4):888-904.
DOI
URL
|
[11] |
赵玉勇. 水煤浆气化炉耐火材料的应用[J]. 内蒙古石油化工, 2009, 35(14):20-22.
|
[12] |
柯昌明, 李有奇, 赵继增, 等. 水煤浆气化炉用高铬耐火材料的研究进展[J]. 耐火材料, 2014, 48(4):298-301.
|
[13] |
杨晓君, 郭洪君. 耐火材料在鲁南化肥厂德士古气化装置中的使用[J]. 煤化工, 1999(2):52-53.
|
[14] |
KWONG K S, PETTY A, BENNETT J P, et al. Wear mechanisms of chromia refractories in slagging gasifiers[J]. International Journal of Applied Ceramic Technology, 2007, 4(6):503-513.
DOI
URL
|
[15] |
KWONG K S, BENNETT J P, POWELL C A, et al. The improvement of slagging gasifier refractories[C]// UNITECR’05,Florida,USA, 2006:70-74.
|
[16] |
KWONG K S, DOGAN C P, BENNETT J P, et al. Use of phosphates to reduce slag penetration in Cr2O3-based refractories:US6815386[P]. Use of phosphates to reduce slag penetration in Cr2O3-based refractories:US6815386[P]. 2004-11-9.
|
[17] |
耿可明, 王文西, 徐延庆, 等. 磷酸盐添加剂对氧化铬材料性能的影响[J]. 耐火材料, 2008, 42(6):413-415.
|
[18] |
BIE C Y, SANG S B, LI Y W, et al. Effects of firing and operating atmospheres on microstructure and properties of phosphate bonded Cr2O3-Al2O3-ZrO2 bricks[J]. China’s Refractories, 2016, 25(2):35-42.
|
[19] |
李冰, 程远, 杨秀丽. 浸盐对水煤浆加压气化炉用Cr2O3-Al2O3-ZrO2砖性能的影响[J]. 耐火与石灰, 2015, 40(4):13-14.
|
[20] |
POWELL C A, BENNETT J P, KWONG K S, et al. An update on field test results for an engineered refractory for slagging gasifiers[R]. Office of Scientific & Technical Information Technical Reports:DOE/NETL-IR-2006-183, Washington, 2006.
|
[21] |
孙红刚, 陈杰, 范志辉, 等. 新型高铬砖在GE气化炉的试用研究[J]. 大氮肥, 2011, 34(s2):108-111.
|
[22] |
李红霞, 孙红刚, 李鹏涛, 等. 真实服役环境与实验室模拟条件下高铬砖损毁形式的对比[J]. 大氮肥, 2018, 41(2):80-85+97.
|
[23] |
吴芸芸, 梁永和, 何清. 水煤浆气化炉用Cr2O3-ZrO2-Al2O3砖的蚀变过程[J]. 耐火材料, 2005, 39(3):220-224.
|
[24] |
NAKANO J, SRIDHAR S, BENNETT J, et al. Interactions of refractory materials with molten gasifier slags[J]. International Journal of Hydrogen Energy, 2011, 36(7):4595-4604.
DOI
URL
|
[25] |
BENNETT J P, KWONG K S, NAKANO J, et al. Impact of temperature and oxygen partial pressure on aluminum phosphate in high chrome oxide refractories[J]. Advances in Science & Technology, 2014, 92:248-257.
|
[26] |
别传玉. 铬铝锆砖的损毁机理及无铬化耐火材料体系设计研究[D]. 武汉:武汉科技大学, 2016.
|
[27] |
丰文祥, 张亚栋, 赵继增, 等. 水煤浆气化炉耐火材料的损毁原因及改进[J]. 煤化工, 2010, 38(4):37-40.
|
[28] |
CAI B L, LI H X, ZHAO S X, et al. Corrosion of high chromia refractory materials by basic coal slag under simulated coal gasification atmosphere[J]. Ceramics International, 2018, 44(5):4592-4602.
DOI
URL
|
[29] |
蔡斌利. 水煤浆气化装置用耐火材料侵蚀机理研究[D]. 北京:北京科技大学, 2018.
|
[30] |
DOGAN C P, KWONG K S, BENNETT J P, et al. Refractory failure in IGCC fossil fuel power systems[R]. Office of Scientific & Technical Information Technical Reports:DOE/ARC-2001-005, Washington, 2005.
|
[31] |
孙红刚, 李鹏涛, 付建莹, 等. Al2O3-Cr2O3砖显微结构对抗渣性能的影响[J]. 耐火材料, 2014, 48(3):188-193.
|
[32] |
王俊涛, 陈松林, 袁林, 等. 水煤浆气化炉用高铬砖损毁机制的研究[J]. 耐火材料, 2020, 54(6):498-502.
|
[33] |
别传玉, 桑绍柏, 李亚伟, 等. 烧成与使用气氛对磷酸盐结合铬铝锆砖结构与性能的影响[J]. 耐火材料, 2015, 49(3):168-174.
|
[34] |
李有奇. 水煤浆加压气化炉用高铬砖抗渣侵蚀机理及性能研究[D]. 武汉:武汉科技大学, 2014.
|