[1] 李红霞.耐火材料手册[M].2版.北京:冶金工业出版社,2021. [2] 张灿,林旭斌,刘都群,等.2019年国外高超声速飞行器技术发展综述[J].飞航导弹,2020(1):16-20. [3] GORI F,CORASANITI S,WOREK W M,et al.Theoretical prediction of thermal conductivity for thermal protection systems[J].Applied Thermal Engineering,2012,49:124-130. [4] 李世斌,马锐,王林.高速飞行器组合式热防护系统研究进展[J].战术导弹技术,2023(1):8-21. [5] 范学领,李定骏,吕伯文,等.国之重器,十载砥砺——重型燃气轮机制造基础研究进展[J].中国基础科学,2018,20(2):32-40. [6] 束国刚,余春华,沈国华,等.新时期我国重型燃气轮机发展研究[J].中国工程科学,2022,24(6):184-192. [7] BORETTI A A.Novel heavy duty engine concept for operation dual fuel H2-NH3[J].International Journal of Hydrogen Energy,2012,37(9):7869-7876. [8] 薛召露,郭洪波,宫声凯,等.新型热障涂层陶瓷隔热层材料[J].航空材料学报,2018,38(2):10-20. [9] 郭洪波,宫声凯,徐惠彬.新型高温/超高温热障涂层及制备技术研究进展[J].航空学报,2014,35(10):2722-2732. [10] 黄皓翔,周伟,石易昂,等.高温射流冲击下耐火混凝土烧蚀试验研究[J].混凝土,2022(4):167-169. [11] 谢元林.我国特殊钢行业的现状及发展趋势[J].特钢技术,2016,22(1):1-6. [12] 李红霞.现代冶金功能耐火材料[M].北京:冶金工业出版社,2019. [13] LI D Z,WANG P,CHEN X Q,et al.Low-oxygen rare earth steels[J].Nature Materials,2022,21:1137-1143. [14] TIAN B H,ZHOU Y,WEI G S.Oxidizing decarbonization characteristics of MgO-C refractories for electric arc furnace steelmaking with CO2 utilization[J].Ceramics International,2022,48(24):36936-36944. [15] 张健,王莉,王栋,等.镍基单晶高温合金的研发进展[J].金属学报,2019,55(9):1077-1094. [16] 工业和信息化部.工业和信息化部部长金壮龙在“部长通道”回应工业稳增长、提升和改造传统产业、5G发展等相关热点问题[EB/OL].(2023-03-05)[2023-08-06].https://www.miit.gov.cn/xwdt/gxdt/ldhd/art/2023/art_7c3f2825171644c99c95 4049dc841bee.html. [17] 杨天钧,张建良,刘征建,等.低碳炼铁 势在必行[J].炼铁,2021,40(4):1-11. [18] 王新东,上官方钦,邢奕,等.“双碳”目标下钢铁企业低碳发展的技术路径[J].工程科学学报,2023,45(5):853-862. [19] ISNALDI R S F,HAUKE S,MA Y,et al.Green steel at its crossroads:Hybrid hydrogen-based reduction of iron ores[J].Journal of Cleaner Production,2022,340:130805. [20]BOST N,AMMAR M R,BOUCHETOU M L,et al.The catalytic effect of iron oxides on the formation of nano-carbon by the Boudouard reaction in refractories[J].Journal of the European Ceramic Society,2016,36(8):2133-2142. [21] 李红霞.双碳背景下耐火材料科技创新的思考[J].耐火材料,2021,55(5):381-384. [22] 李永全,彭婷.中国耐火材料行业发展状况与未来展望[J].耐火材料,2022,56(5):435-439+446. [23] LI S F,ZHANG H J,ZOU Y S,et al.Microstructural evolution during H2 corrosion of Al2O3-SiO2 based refractory aggregates[J].Ceramics International,2023,49(17):27788-27795. [24] ZHANG Q,XU J,WANG Y J,et al.Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows[J].Applied Energy,2018,209(1):251-265. [25] 史华跃,冯庆晓,董瀚,等.沙钢超薄带双辊铸轧工艺及超薄带耐候钢的发展现状[J].上海金属,2020,42(6):51-57. [26] GROUP R W.GMTN-GIFA,METEC,THERMPROCESS and NEWCAST 2023:Transformation pathways to a climate-neutral metal industry[J].Refractories Worldforum,2022(3):33-34. [27] 生态环境部.2020年中国生态环境统计年报[EB/OL].(2022-02-18)[2023-05-06].https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202202/t20220218_969391.shtml. [28] 乔贞,邓国平,钱超宏,等.离子炉处理危险废物的工艺研究[J].广东化工,2019,46(13):151-153. [29] 易帅,邓丽娜,许谦,等.危废处置回转窑用典型耐火材料抗熔渣侵蚀性能研究[J].耐火材料,2021,55(2):121-125. [30] 韩桂洪,王智骁,刘兵兵,等.高盐有机废液焚烧炉用耐火材料研究现状与展望[J].工程科学学报,2023,45(8):1353-1363. [31] SENGUPTA P,MISHRA R,SOUDAMINI N,et al.Study on fused/cast AZS refractories for deployment in vitrification of radioactive waste effluents[J].Journal of Nuclear Materials,2015,467:144-154. [32] 干勇.关键基础材料的发展及创新[J].钢铁研究学报,2021,33(10):997-1002. [33] 李红霞.耐火材料发展概述[J].无机材料学报,2018,33(2):198-205. |