[1] 刘庆生,常晴,李江霖.高温高发射率陶瓷材料的制备与研究[J].中国稀土学报,2017,35(5):584-591. [2] 常晴,李江霖,刘庆生,等.Sol-gel法制备B位掺杂铝酸镧红外辐射陶瓷材料[J].稀有金属与硬质合金,2018,46(4):43-49. [3] 田原.“双碳”目标下经济增长的碳减排效应研究[D].成都:西南财经大学,2023. [4] 刘章发,高建刚,何丽娜.中国经济增长、能源消费与二氧化碳排放互动关系研究——基于面板VAR的实证分析[J].重庆社会科学,2023(9):111-124. [5] CHEN J,GAO M,CHENG S,et al.County-level CO2 emissions and sequestration in China during 1997—2017[J].Scientific Data,2020,7(1):391. [6] 武奇,王光阳,孙义燃,等.工业窑炉用红外辐射涂层的研究进展[J].耐火材料,2022,56(6):543-547. [7] 张珂,董正洪,张红阳,等.工业窑炉用高辐射率红外节能涂料的研究及工业应用[J].玻璃搪瓷与眼镜,2020,48(5):37-40. [8] ZHAO J,MA L,ZAYED M E,et al.Industrial reheating furnaces:A review of energy efficiency assessments,waste heat recovery potentials,heating process characteristics and perspectives for steel industry[J].Process Safety and Environmental Protection,2021,147:1209-1228. [9] 张一帆,王曲,王刚,等.ZrO2加入量对铝酸镧基高发射率涂层材料的影响[J].耐火材料,2023,57(1):6-9. [10] 张一帆,王曲,王刚,等.黏结剂种类对铝酸镧涂层材料性能的影响[J].耐火材料,2022,56(2):123-126. [11] AKSEL C,RAND B,RILEY F L,et al.Mechanical properties of magnesia-spinel composites[J].Journal of the European Ceramic Society,2002,22(5):745-754. [12] BAUDÍN C,MARTÍNEZ R,PENA P.High-temperature mechanical behavior of stoichiometric magnesium spinel[J].Journal of the American Ceramic Society,1995,78(7):1857-1862. [13] HUA X X,MAO X D,YANG S,et al.Entropy regulation in spinel oxide with narrowed band gap and lattice distortion toward high-temperature infrared radiation[J].Journal of Alloys and Compounds,2024,994:174631. [14] 李扬扬,马文,李敏,等.高红外辐射材料研究与应用进展[J].陶瓷学报,2024,45(1):17-31. [15] 张伟钢,朱晓倩.耐温型低红外发射率复合涂层的制备及性能表征[J].涂料工业,2017,47(3):16-20. [16] 刘冠一,苏家庆,张剑,等.La3Ni2O7基红外辐射涂料的红外辐射特性研究[J].工业炉,2022,44(5):1-6. [17] 吕自豪,顾华志,杨爽,等.热处理时间对铜渣制备红外辐射涂层结构及性能的影响[J].耐火材料,2024,58(1):35-39. [18] 刘富生.稀土氧化物复合氧化铪高温红外辐射涂层的制备与研究[D].武汉:武汉理工大学,2020. |