Refractories ›› 2021, Vol. 55 ›› Issue (5): 385-389.DOI: 10.3969/j.issn.1001-1935.2021.05.003
Previous Articles Next Articles
Yin Xin(), Liu Zhenglong, Ding Jun, Yu Chao, Deng Chengji(
), Zhu Hongxi
Received:
2021-07-22
Online:
2021-10-15
Published:
2021-10-25
Contact:
Deng Chengji
通讯作者:
邓承继
作者简介:
尹鑫:女,1995年生,硕士研究生。E-mail: 1614608635@qq.com
基金资助:
CLC Number:
Yin Xin, Liu Zhenglong, Ding Jun, Yu Chao, Deng Chengji, Zhu Hongxi. Research progress of bonding systems for Al2O3-C sliding plates[J]. Refractories, 2021, 55(5): 385-389.
尹鑫, 刘正龙, 丁军, 余超, 邓承继, 祝洪喜. Al2O3-C滑板结合体系的研究进展[J]. 耐火材料, 2021, 55(5): 385-389.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.nhcl.cn/EN/10.3969/j.issn.1001-1935.2021.05.003
[1] | 王子昊, 张婧, 王珍, 等. Al2O3-ZrO2-C质滑板材料的研究进展[J]. 耐火材料, 2021, 55(3):264-271+276 |
[2] | 马世春, 韩俊华. 低碳Al2O3-C耐火材料研究的新进展[J]. 耐火材料, 2017, 51(3):235-240. |
[3] | 李享成, 潘剑波, 朱伯铨. 石墨含量对Al2O3-C材料物理化学性能的影响[J]. 硅酸盐通报, 2010, 29(2):395-398. |
[4] |
PILLI V, SARKAR R. Low carbon containing Al2O3-C refractories with nanocarbon as the sole carbon source[J]. Ceramics International, 2020, 46(8):12812-12821.
DOI URL |
[5] |
PILLI V, SARKAR R. Study on the nanocarbon containing Al2O3-C continuous casting refractories with reduced fixed carbon content[J]. Journal of Alloys and Compounds, 2019, 781:149-158.
DOI URL |
[6] | 石凯, 钟香崇. 金属Al/Si结合Al2O3-C滑板的使用损毁分析[J]. 硅酸盐通报, 2008, 27(4):827-831+842. |
[7] | 李姝欣, 段锋, 任学华, 等. 连铸用Al2O3-C滑板研究现状与展望[J]. 硅酸盐通报, 2019, 38(9):2847-2854+2864. |
[8] | 何思梦, 韩兵强, 魏耀武, 等. 微晶石墨对不烧Al2O3-C耐火材料性能的影响[J]. 耐火材料, 2019, 53(3):217-220+226. |
[9] | 阮国智, 李楠, 吴新杰. Al2O3-C耐火材料对超低碳钢的增碳作用[J]. 耐火材料, 2004, 38(6):399-401+406. |
[10] |
WANG Q H, LI Y W, JIN S L, et al. Enhanced mechanical properties of Al2O3-C refractories with silicon hybridized expanded graphite[J]. Materials Science and Engineering:A, 2018, 709:160-171.
DOI URL |
[11] | 丁冬海, 杨少雨, 肖国庆. 含碳耐火材料酚醛树脂结合剂的研究现状与展望[J]. 材料导报, 2017, 31(6):95-100. |
[12] |
FAN H B, LI Y W, SANG S B. Microstructures and mechanical properties of Al2O3-C refractories with silicon additive using different carbon sources[J]. Materials Science and Engineering A, 2011, 528(7-8):3177-3185.
DOI URL |
[13] | 柴近, 段辉, 顾华志. Al2O3-C质浸入式水口抗氧化涂料的研制[J]. 耐火材料, 2015, 49(2):144-145+148. |
[14] |
ATZENHOFER C, GSCHIEL S, HARMUTH H. Phase formation in Al2O3-C refractories with Al addition[J]. Journal of the European Ceramic Society, 2017, 37(4):1805-1810.
DOI URL |
[15] |
YU C, DONG B, DENG C J, et al.In-situ formation of plate-like Al4O4C and MWCNTs in Al2O3-C refractories with Al4SiC4 additives[J]. Materials Chemistry and Physics, 2021, 263:124363.
DOI URL |
[16] | 邓承继, 余超, 祝洪喜, 等. 铝对高岭石熟料合成Al4SiC4-Al4O4C复合材料的影响[J]. 耐火材料, 2011, 45(3):170-173. |
[17] | 邓承继, 余超, 匡健磊, 等. Na +对制备Al4SiC4/Al4O4C复合耐火材料的影响[J]. 人工晶体学报, 2015, 44(4):1127-1131. |
[18] |
YU C, CHENG K R, DING J, et al. Synjournal and characterisation of Al4O4C nanorod/CNT composites[J]. Ceramics International, 2017, 43(14):11415-11420.
DOI URL |
[19] |
LIU G F, LIAO N, NATH M, et al. Optimized mechanical properties and oxidation resistance of low carbon Al2O3-C refractories through Ti3AlC2 addition[J]. Journal of the European Ceramic Society, 2021, 41(4):2948-2957.
DOI URL |
[20] |
LV L H, XIAO G Q, DING D H. Improved thermal shock resistance of low-carbon Al2O3-C refractories fabricated with C/MgAl2O4 composite powders[J]. Ceramics International, 2021, 47(14):20169-20177.
DOI URL |
[21] |
BAN J J, ZHOU C J, FENG L, et al. Preparation and application of ZrB2-SiCw composite powder for corrosion resistance improvement in Al2O3-ZrO2-C slide plate materials[J]. Ceramics International, 2020, 46(7):9817-9825.
DOI URL |
[22] | 刘磊, 李勇, 翟亚伟. 添加Si3N4对Al2O3-ZrO2-C滑板性能的影响[J]. 耐火材料, 2010, 44(5):369-371. |
[23] | 张红, 李楠, 鄢文. 加入碳纤维对铝碳耐火材料性能及显微结构的影响[J]. 耐火材料, 2014, 48(2):106-110. |
[24] | 吴钦鑫, 杜日清, 王子琦, 等. 纳米NiO掺杂Carbores’P对 Al2O3-C 耐火材料力学性能的影响[J]. 耐火材料, 2020, 54(2):129-133. |
[25] |
LUZ A P, SALOMÃO R, BITENCOURT C S, et al. The rmosetting resins for carbon-containing refractories:theoretical basis and novel insights[J]. Open Ceramics, 2020, 3:100025.
DOI URL |
[26] |
RENDA C G, BERTHOLDO R, VENÂNCIO T, et al. Influence of the mixing process on the graphitization of phenolic resins[J]. Ceramics International, 2019, 45(9):12196-12204.
DOI URL |
[27] |
ZHAO H F, XIE D D, ZHANG S, et al. Study on improving the high-temperature oxidation resistance of pyrolytic carbons of phenolic resin binder by in-situ formation of carbon nanotubes[J]. Reactive and Functional Polymers, 2020, 157:104772.
DOI URL |
[28] |
LIAO N, LI Y W, WANG Q H, et al. Synergic effects of nano carbon sources on thermal shock resistance of Al2O3-C refractories[J]. Ceramics International, 2017, 43(16):14380-14388.
DOI URL |
[29] |
CHEN Y Q, LIU G Q, HOU X J, et al. Influence of bonding carbon on low carbon Al2O3-C refractory composites[J]. Ceramics International, 2017, 43(17):14599-14607.
DOI URL |
[30] |
DARBAN S, KAKROUDI M G, VANDCHALI M B, et al. Characterization of Ni-doped pyrolyzed phenolic resin and its addition to the Al2O3-C refractories[J]. Ceramics International, 2020, 46(13):20954-20962.
DOI URL |
[31] |
RASTEGAR H, BAVAND-VANDCHALI M, NEMATI A, et al. Catalytic graphitization behavior of phenolic resins by addition of in situ formed nano-Fe particles[J]. Physica E:Low-dimensional Systems and Nanostructures, 2018, 101:50-61.
DOI URL |
[32] |
TALABI S I, LUZ A P, PANDOLFELLI V C, et al. Synjournal and graphitization of resole resins by ferrocene[J]. Progress in Natural Science:Materials International, 2019, 29(1):71-80.
DOI URL |
[33] | 刘耕夫, 李亚伟, 廖宁, 等. 添加碳化硼对低碳铝碳耐火材料显微结构和性能的影响[J]. 硅酸盐学报, 2017, 45(9):1340-1346. |
[34] |
LIAO N, LI Y W, JIN S L, et al. Reduced brittleness of multi-walled carbon nanotubes (MWCNTs) containing Al2O3-C refractories with boron carbide[J]. Materials Science and Engineering:A, 2017, 698:80-87.
DOI URL |
[35] |
TALABI S I, LUZ A P, PANDOLFELLI V C, et al. Structural evolution during the catalytic graphitization of a thermosetting refractory binder and oxidation resistance of the derived carbons[J]. Materials Chemistry and Physics, 2018, 212:113-121.
DOI URL |
[36] |
TALABI S I, LUZ A P, LUCAS A A, et al. Catalytic graphitization of novolac resin for refractory applications[J]. Ceramics International, 2018, 44(4):3816-3824.
DOI URL |
[37] | 石凯, 钟香崇. 金属Al-Si结合Al2O3-C滑板的性能和使用[J]. 耐火材料, 2007, 41(3):205-207+219. |
[38] | 刘贺, 马鸿文, 李小超, 等. ZrN-Sialon复相粉体对Al2O3-C耐火材料性能的影响[J]. 人工晶体学报, 2018, 47(2):280-285. |
[39] |
GUO D Q, LI X C, CHEN P A, et al. Microstructure evolution and its effect on thermo-mechanical properties of low-carbon Al2O3-C refractories[J]. Ceramics International, 2016, 42(16):19071-19078.
DOI URL |
[40] |
DING J, YU C, LIU J P, et al. Effects of silicon powder content on the properties and interface bonding of nitrided Al2O3-C refractories[J]. Materials Chemistry and Physics, 2018, 206:193-203.
DOI URL |
[41] |
DENG X, LI X C, ZHU B Q, et al. In-situ synjournal mechanism of plate-shaped β-Sialon and its effect on Al2O3-C refractory properties[J]. Ceramics International, 2015, 41(10):14376-14382.
DOI URL |
[42] |
YIN C F, LI X C, CHEN P A, et al. Morphological regulation and simulation of β-Sialon and its effect on thermo-mechanical properties of Al2O3-C refractories[J]. Ceramics International, 2020, 46(10):14597-14604.
DOI URL |
[43] |
YIN C F, LI X C, CHEN P A, et al. Thermo-mechanical properties of Al2O3-C refractories with in situ synthesized non-oxide bonding phases[J]. Ceramics International, 2019, 45(6):7427-7436.
DOI URL |
[44] |
ZHANG J, LI X C, GONG W, et al. First-principles simulation of the growth of in situ synthesized β-Sialon and its effects on the thermo-mechanical properties of Al2O3-C refractory composites[J]. Journal of the European Ceramic Society, 2019, 39(8):2739-2747.
DOI URL |
[45] | 王则祥, 李航, 谢文銮, 等. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展, 2020, 8(1):6-14. |
[46] | 刘德启. 草浆造纸黑液改性制备木质素酚醛树脂结合剂[J]. 耐火材料, 2000, 34(6):337-339. |
[47] |
FERNÁNDEZ M T, ORLANDI S, CODEVILLA M, et al. Performance of calcium lignosulfonate as a stabiliser of highly expansive clay[J]. Transportation Geotechnics, 2021, 27:100469.
DOI URL |
[48] | 宋云飞, 王少华, 邓承继, 等. 保温时间对β-Sialon结合镁铝尖晶石-碳材料的影响及其氧化动力学[J]. 无机材料学报, 2017, 32(5):495-501. |
[49] | 刘建鹏, 邓承继, 祝洪喜, 等. Si粉加入量对氮化反应制备Si3N4结合MgO-C材料的影响[J]. 耐火材料, 2017, 51(3):209-211. |
[50] |
DING J, DENG C J, YUAN W J, et al. The synjournal of titanium nitride whiskers on the surface of graphite by molten salt media[J]. Ceramics International, 2013, 39(3):2995-3000.
DOI URL |
[51] |
DING J, GUO D, DENG C J, et al. Low-temperature synjournal of nanocrystalline ZrC coatings on flake graphite by molten salts[J]. Applied Surface Science, 2017, 407:315-321.
DOI URL |
[52] |
DING J, DENG C J, YUAN W J, et al. Novel synjournal and characterization of silicon carbide nanowires on graphite flakes[J]. Ceramics International, 2014, 40(3):4001-4007.
DOI URL |
[53] |
LIU Z L, DENG C J, YU C, et al. Preparation of in situ grown silicon carbide whiskers onto graphite for application in Al2O3-C refractories[J]. Ceramics International, 2018, 44(12):13944-13950.
DOI URL |
[54] |
WANG X, CHEN Y, YU C, et al. Preparation and application of ZrC-coated flake graphite for Al2O3-C refractories[J]. Journal of Alloys and Compounds, 2019, 788:739-747.
DOI URL |
[1] | Zhang Yanli, Wang Di, Li Ying, Jia Quanli. Optimization and research progress on bonding systems of refractory castables [J]. Refractories, 2021, 55(6): 539-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||