Refractories ›› 2022, Vol. 56 ›› Issue (3): 197-201.DOI: 10.3969/j.issn.1001-1935.2022.03.004
Previous Articles Next Articles
Li Yage1)(), Wang Junkai2), Duan Hongjuan1), Liang Feng1), Zhang Haijun1)(
)
Received:
2021-07-26
Online:
2022-06-15
Published:
2022-06-24
Contact:
Zhang Haijun
李亚格1)(), 王军凯2), 段红娟1), 梁峰1), 张海军1)(
)
通讯作者:
张海军
作者简介:
李亚格:男,1994年生,博士研究生。E-mail: 542631572@qq.com
基金资助:
CLC Number:
Li Yage, Wang Junkai, Duan Hongjuan, Liang Feng, Zhang Haijun. Effect of catalyst types on cold properties of low carbon MgO-C refractories[J]. Refractories, 2022, 56(3): 197-201.
李亚格, 王军凯, 段红娟, 梁峰, 张海军. 催化剂种类对低碳MgO-C耐火材料常温性能的影响[J]. 耐火材料, 2022, 56(3): 197-201.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.nhcl.cn/EN/10.3969/j.issn.1001-1935.2022.03.004
原料 | 加入量(w)/% | |
---|---|---|
≤1 mm | 20 | |
电熔镁砂 | 3~1 mm | 13 |
5~3 mm | 35 | |
镁砂细粉 | ≤0.088 mm | 25 |
Si粉 | 10 μm | 3 |
鳞片石墨 | 150 μm | 4 |
含有催化剂的酚醛树脂(外加) | 4 |
Table 1 Composition of samples
原料 | 加入量(w)/% | |
---|---|---|
≤1 mm | 20 | |
电熔镁砂 | 3~1 mm | 13 |
5~3 mm | 35 | |
镁砂细粉 | ≤0.088 mm | 25 |
Si粉 | 10 μm | 3 |
鳞片石墨 | 150 μm | 4 |
含有催化剂的酚醛树脂(外加) | 4 |
项 目 | 试样C | 试样F | 试样N | 试样W |
---|---|---|---|---|
常温耐压强度/MPa | 53.6 | 49.0 | 60.5 | 56.9 |
常温抗折强度/MPa | 7.7 | 7.6 | 9.4 | 8.3 |
体积密度/(g·cm-3) | 2.85 | 2.89 | 3.05 | 3.10 |
显气孔率/% | 8.3 | 8.7 | 7.4 | 7.6 |
Table 2 Physical properties of samples after 24 h curing at 200 ℃
项 目 | 试样C | 试样F | 试样N | 试样W |
---|---|---|---|---|
常温耐压强度/MPa | 53.6 | 49.0 | 60.5 | 56.9 |
常温抗折强度/MPa | 7.7 | 7.6 | 9.4 | 8.3 |
体积密度/(g·cm-3) | 2.85 | 2.89 | 3.05 | 3.10 |
显气孔率/% | 8.3 | 8.7 | 7.4 | 7.6 |
项目 | 试样C | 试样F | 试样N | 试样W |
---|---|---|---|---|
常温耐压强度/MPa | 17.7 | 21.2 | 21.4 | 21.5 |
常温抗折强度/MPa | 2.1 | 2.5 | 2.4 | 2.0 |
体积密度/(g·cm-3) | 2.95 | 2.95 | 2.99 | 3.01 |
显气孔率/% | 14.0 | 13.5 | 14.0 | 12.6 |
烧后线变化/% | 0.14 | 0.21 | 0.29 | 0.21 |
Table 3 Physical properties of samples fired at 800 ℃
项目 | 试样C | 试样F | 试样N | 试样W |
---|---|---|---|---|
常温耐压强度/MPa | 17.7 | 21.2 | 21.4 | 21.5 |
常温抗折强度/MPa | 2.1 | 2.5 | 2.4 | 2.0 |
体积密度/(g·cm-3) | 2.95 | 2.95 | 2.99 | 3.01 |
显气孔率/% | 14.0 | 13.5 | 14.0 | 12.6 |
烧后线变化/% | 0.14 | 0.21 | 0.29 | 0.21 |
项目 | 试样C | 试样F | 试样N | 试样W |
---|---|---|---|---|
常温耐压强度/MPa | 67.8 | 69.2 | 65.8 | 60.5 |
常温抗折强度/MPa | 8.0 | 8.8 | 8.4 | 8.5 |
体积密度/(g·cm-3) | 3.03 | 3.07 | 3.02 | 3.10 |
显气孔率/% | 12.7 | 13.2 | 12.2 | 10.7 |
烧后线变化/% | 0.14 | 0.04 | 0.07 | 0.21 |
Table 4 Physical properties of samples fired at 1 100 ℃
项目 | 试样C | 试样F | 试样N | 试样W |
---|---|---|---|---|
常温耐压强度/MPa | 67.8 | 69.2 | 65.8 | 60.5 |
常温抗折强度/MPa | 8.0 | 8.8 | 8.4 | 8.5 |
体积密度/(g·cm-3) | 3.03 | 3.07 | 3.02 | 3.10 |
显气孔率/% | 12.7 | 13.2 | 12.2 | 10.7 |
烧后线变化/% | 0.14 | 0.04 | 0.07 | 0.21 |
项目 | 试样C | 试样F | 试样N | 试样W |
---|---|---|---|---|
常温耐压强度/MPa | 69.2 | 53.1 | 62.2 | 47.8 |
常温抗折强度/MPa | 10.9 | 7.0 | 9.4 | 7.7 |
体积密度/(g·cm-3) | 3.03 | 3.04 | 3.03 | 3.09 |
显气孔率/% | 11.5 | 11.2 | 11.5 | 10.1 |
烧后线变化/% | 0.50 | 0.43 | 0.36 | 0.64 |
Table 5 Physical properties of samples fired at 1 400 ℃
项目 | 试样C | 试样F | 试样N | 试样W |
---|---|---|---|---|
常温耐压强度/MPa | 69.2 | 53.1 | 62.2 | 47.8 |
常温抗折强度/MPa | 10.9 | 7.0 | 9.4 | 7.7 |
体积密度/(g·cm-3) | 3.03 | 3.04 | 3.03 | 3.09 |
显气孔率/% | 11.5 | 11.2 | 11.5 | 10.1 |
烧后线变化/% | 0.50 | 0.43 | 0.36 | 0.64 |
[1] |
XIAO J L, CHEN J F, WEI Y W, et al. Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1 100-1 500 ℃ range[J]. Ceramics International, 2019, 45(17):21099-21107.
DOI URL |
[2] |
RASTEGAR H, BAVAND-VANDCHALI M, NEMATI A, et al. Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin[J]. Ceramics International, 2019, 45(3):3390-3406.
DOI URL |
[3] |
EWAIS M, MOHOAMED E. Carbon based refractories[J]. Journal of the Ceramic Society of Japan, 2004, 112(1310):517-532.
DOI URL |
[4] |
CAO G L, DENG C J, CHEN Y, et al. Influence of sintering process and interfacial bonding mechanism on the mechanical properties of MgO-C refractories[J]. Ceramics International, 2020, 46(10):16860-16866.
DOI URL |
[5] |
BAHTLI T, HOPA D Y, BOSTANCI V M, et al. Investigation of thermal shock behaviour of MgO-C refractories by incorporation of pyrolytic liquid as a binder[J]. Materials Chemistry and Physics, 2018, 213:14-22.
DOI URL |
[6] |
HU S Y, ZHU R, LIU R Z, et al. Decarburisation behaviour of high-carbon MgO-C refractories in O2-CO2 oxidising atmospheres[J]. Ceramics International, 2018, 44(17):20641-20647.
DOI URL |
[7] |
ZHU T, LI Y, SANG S, et al. Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets[J]. Materials and Design, 2017, 124(6):16-23.
DOI URL |
[8] |
LIU Z Y, YUAN L, YU J K, et al. Improvements in the mechanical properties and oxidation resistance of MgO-C refractories with the addition of nano-Y2O3 powder[J]. Advances in Applied ceramics, 2019, 118(5):249-256.
DOI URL |
[9] |
CHEN J F, LI N, HUBALKOVA J, et al. Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: Antioxidant or alternative carbon source?[J]. Journal of the European Ceramic Society, 2018, 38(9):3387-3394.
DOI URL |
[10] |
ZHANG J, LI C, GONG W, et al. First-principles simulation of the growth of in situ synthesised β-Sialon and its effects on the thermo-mechanical properties of Al2O3-C refractory composites[J]. Journal of the European Ceramic Society, 2019, 39(8):2739-2747.
DOI URL |
[11] | WANG J, DENG X, DU S, et al. Carbon nanotube reinforced ceramic composites:a review[J]. International Ceramic Review, 2014, 63(6):286-289. |
[12] |
LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
DOI URL |
[13] | ZHU B Q, WEI G P, LI X C, et al. Preparation and growth mechanism of carbon nanotubes via catalytic pyrolysis of phenol resin[J]. Materials Research Innovations, 2014, 18(4):267-272. |
[14] |
WANG J K, DENG X G, ZHANG H J, et al. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin[J]. Physica E, 2017, 86:24-35.
DOI URL |
[15] |
YIN C F, LI X C, CHEN P A, et al. Thermo-mechanical properties of Al2O3-C refractories with in situ synthesized non-oxide bonding phases[J]. Ceramics International, 2019, 45(6):7427-7436.
DOI URL |
[16] |
ZHU T, LI Y, SANG S, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories[J]. Ceramics International, 2014, 40(3):4333-4340.
DOI URL |
[17] | 王军凯, 邓先功, 张海军, 等. 碳纳米管增强碳复合耐火材料的研究进展[J]. 耐火材料, 2016, 50(2):150-154. |
[18] |
WANG J Q, SHEN B X, LAN M C, et al, Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics:The influence of catalyst and reaction pressure[J]. Catalysis Today, 2020, 351:50-57.
DOI URL |
[1] | Li Wenfeng, Shen Tianzi, Guo Huishi, Cao Jinjin, Kang Xiaoxu, Shi Kai, Kang Xiaoyang. Influence of polyhydroxy saccharide binders on properties of Al2O3-SiC-C waterless taphole clay [J]. Refractories, 2024, 58(4): 314-318. |
[2] | Deng Chengji, He Feng, Liang Yiming, Li Ji, Gao Chao, Mu Meng. Influence of TiO2 addition on phase composition and properties of porous SiC ceramics [J]. Refractories, 2024, 58(2): 93-98. |
[3] | Min Changsheng, Dong Bo, Yu Chao, Deng Chengji, Xing Guangchao, Ding Jun, Liu Hao, Zhu Hong-xi. Effects of particle gradation on microstructure and mechanical properties of recrystallized SiC honeycomb ceramics [J]. Refractories, 2024, 58(2): 127-131. |
[4] | Xia Yuting, Yang Wenbo, Rao Yutong, Nie Ruishan, Yao Yuan. Composition optimization and performance enhancement of lightweight and high-strength mullite castables [J]. Refractories, 2024, 58(1): 72-75. |
[5] | Yao Wankai, Fang Binxiang, Li Xiangcheng, Chen Ping’an, Zhu Yingli, Zhu Boquan. Research progress on strengthening and toughening of boron carbide composite ceramics [J]. Refractories, 2023, 57(6): 531-537. |
[6] | Kuang Changliu, Wang Xing, Liu Zhenglong, Ding Jun, Yu Chao, Deng Chengji, Zhu Hongxi. Effect of ZrC modified graphite on microstructure and properties of low-carbon Al2O3-C refractories [J]. Refractories, 2023, 57(4): 295-299. |
[7] | Zou Xin, Xiao Xueping, Song Yanan, Chen Ping’an, Zhu Yingli, Li Xiangcheng. Effect of B4C addition on properties of Al2O3-C materials [J]. Refractories, 2023, 57(4): 310-313. |
[8] | Lyu Siwei, Li Minghui, Ni Wei, Tong Shengli, Chen Ruoyu, Li Saisai, Li Canhua. Effect of spodumene particle size on properties of Al2O3-SiC-C castables [J]. Refractories, 2023, 57(4): 337-342. |
[9] | Zou Qiliang, Deng Chengji, Dong Bo, Ding Jun, Zhu Wanzheng, Wang Zhoufu, Zhu Hongxi, Wang Lin, Yu Chao. In-situ formed ceramic bonded Ti(C,N) composites and their properties [J]. Refractories, 2023, 57(2): 93-98. |
[10] | Liu Tao, Ma Beiyue, Zan Wenyu. Research status of rare earth salt thermal barrier/environmental barrier coatings [J]. Refractories, 2023, 57(2): 175-179. |
[11] | Chen Yang, Deng Chengji, Ding Jun, Yu Chao, Lou Xiaoming. Effect of ferric nitrate loading mode on properties of Si3N4 composite MgO-C refractories prepared by nitridation [J]. Refractories, 2022, 56(6): 477-480. |
[12] | Yin Yucheng, Zhu Qingyou, Zhou Shuangqing, Xia Zhongfeng, Li Yiwei, Liu Zhiqiang. Development of a comprehensive tester for hot mechanical properties of refractories and its experimental teaching application [J]. Refractories, 2022, 56(4): 364-368. |
[13] | Cai Fuling, Han Bingqiang, Chen Junfeng, Miao Zheng, Wang Yilong. Effect of Ti3AlC2 addition on MgO-C refractories [J]. Refractories, 2022, 56(3): 193-196. |
[14] | Zhang Chuang, Song Yijie. Influence of different composite sintering aids on properties of gas-pressure sintered Si3N4 ceramics [J]. Refractories, 2022, 56(2): 141-145. |
[15] | Shan Jingyi, Huang Zhenxia, Wang Junkai, Li Tao, Zhou Xuan, Xing Yingying. First-principles calculation of mechanical properties of Fe,Co and Ni doped 3C-SiC [J]. Refractories, 2021, 55(6): 476-482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||