[1] |
姜贵庆, 俞继军. 长时间气动加热飞行器的隔热机理[J]. 宇航材料工艺, 2006, 36(1):27-29.
|
[2] |
王小路, 黄晋, 张友寿, 等. 耐火保温材料现状及发展[J]. 耐火材料, 2016, 50(1):75-80.
|
[3] |
田响宇, 韩银龙, 周粮, 等. 重复使用对纤维增强SiO2气凝胶材料隔热性能的影响[J]. 耐火材料, 2021, 55(2):116-120.
|
[4] |
孙小飞, 王海梅, 王刚, 等. SiO2气凝胶-玻璃纤维复合隔热材料中玻璃纤维分散工艺研究[J]. 耐火材料, 2019, 53(2):81-85.
|
[5] |
KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211):741.
|
[6] |
孔勇, 沈晓冬, 崔升. 气凝胶纳米材料[J]. 中国材料进展, 2016, 35(8):569-576+568.
|
[7] |
MIZUSHIMA Y, HORI M. Properties of alumina aerogels prepared under different conditions[J]. Journal of Non-Crystalline Solids, 1994, 167(1-2):1-8.
DOI
URL
|
[8] |
高庆福, 张长瑞, 冯坚, 等. 氧化铝气凝胶制备工艺研究进展[C]// 2008全国功能材料科技与产业高层论坛论文集,天津, 2008:660-663.
|
[9] |
BULENT E. Alumina gels that form porous transparent Al2O3[J]. Journal of Materials Science, 1975, 10(11):1856-1860.
DOI
URL
|
[10] |
高庆福. 纳米多孔SiO2、Al2O3气凝胶及其高效隔热复合材料研究[D]. 长沙: 国防科学技术大学, 2009.
|
[11] |
POCO J F, SATCHER J H, HRUBESH L W. Synthesis of high porosity,monolithic alumina aerogels[J]. Journal of Non-Crystalline Solids, 2001, 285(1):57-63.
DOI
URL
|
[12] |
ZU G Q, SHEN J, WEI X Q, et al. Preparation and characterization of monolithic alumina aerogels[J]. Journal of Non-crystalline Solids, 2011, 357(15):2903-2906.
DOI
URL
|
[13] |
PIERRE A C, BEGAG R, PAJONK G. Structure and texture of alumina aerogel monoliths made by complexation with ethyl acetoacetate[J]. Journal of Materials Science, 1999, 34(20):4937-4944.
DOI
URL
|
[14] |
余煜玺, 马锐, 王贯春, 等. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12):136-142.
|
[15] |
GAO Q F, ZHANG C R, FENG J, et al. Preparation of low density,monolithic alumina aerogels[J]. Chinese Journal of Inorganic Chemistry, 2008, 24(9):1456-1460.
|
[16] |
ZU G, SHEN J, ZOU L, et al. Nanoengineering super heat-resistant,strong alumina aerogels[J]. Chemistry of Materials, 2013, 25(23):4757-4764.
DOI
URL
|
[17] |
GASH A E, TILLOTSON T M, SATCHER J H, et al. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors[J]. Journal of Non-crystalline Solids, 2001, 285(1):22-28.
DOI
URL
|
[18] |
周洁洁, 陈晓红, 胡子君, 等. 热处理对块状氧化铝气凝胶微观结构的影响[J]. 宇航材料工艺, 2010, 40(2):51-54.
|
[19] |
BAUMANN T F, GASH A E, CHINN S C, et al. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors[J]. Chemistry of Materials, 2005, 17(2):395-401.
DOI
URL
|
[20] |
胡子君, 周洁洁, 陈晓红, 等. 氧化铝气凝胶的研究进展[J]. 硅酸盐通报, 2009, 28(5):1002-1007.
|
[21] |
HORIUCHI T, OSAKI T, SUGIYAMA T, et al. Maintenance of large surface area of alumina heated at elevated temperatures above 1300 ℃ by preparing silica-containing pseudoboehmite aerogel[J]. Journal of Non-crystalline Solids, 2001, 291(3):187-198.
DOI
URL
|
[22] |
高庆福, 张长瑞, 冯坚, 等. 氧化铝气凝胶复合材料的制备与隔热性能[J]. 国防科技大学学报, 2008(4):39-42.
|
[23] |
LERMONTOV S A, MALKOVA A N, YURKOVA L, et al. Diethyl and methyl-tert-buthyl ethers as new solvents for aerogels preparation[J]. Materials Letters, 2014, 116(1):116-119.
DOI
URL
|
[24] |
姜凯, 白臻祖, 黄珊, 等. 气凝胶的研究进展[J]. 云南化工, 2020, 47(6):1-5.
|
[25] |
WANG P, EMMERLING A, TAPPERT W, et al. High-temperature and low-temperature supercritical drying of aerogels-structural investigations with saxs[J]. J Appl Crystallogr, 1991, 24(5):777-780.
DOI
URL
|
[26] |
WALENDZIEWSKI J, STOLARSKI M, PNIAK B, et al. Synthesis and properties of alumina aerogels[J]. Reaction Kinetics and Catalysis Letters, 1999, 66(1):71-77.
DOI
URL
|
[27] |
ZHANG X K, RUI Z, JIN S L, et al. Synthesis of alumina aerogels from AlCl3·6H2O with an aid of acetoacetic-grafted polyvinyl alcohol[J]. Journal of Sol-Gel Science and Technology, 2018, 87(2):486-495.
DOI
URL
|
[28] |
REN L L, CUI S M, CAO F C, et al. An easy way to prepare monolithic inorganic oxide aerogels[J]. Angewandte Chemie, 2014, 53(38):10147-10149.
|
[29] |
WANG H M, SUN X F, LI H X. Study on glass fiber dispersion technology in SiO2 aerogel-glass fiber composite insulation materials[J]. China’s Refractories, 2019, 28(1):32-36.
|
[30] |
WU L N, HUANG Y D, WANG Z J, et al. Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying[J]. Applied Surface Science, 2010, 256(20):5973-5977.
DOI
URL
|
[31] |
张耀明, 李巨白. 玻璃纤维与矿物棉全书[M]. 北京: 化学工业出版社, 2001:21-23.
|
[32] |
孙晶晶, 胡子君, 吴文军, 等. 氧化铝气凝胶复合高温隔热瓦的制备及性能[J]. 宇航材料工艺, 2017, 47(3):33-36,41.
|
[33] |
OSAKI T, MORI T. Characterization of nickel-alumina aerogels with high thermal stability[J]. Journal of Non-crystalline Solids, 2009, 355(31):1590-1596.
DOI
URL
|
[34] |
周洁洁, 陈晓红, 宋怀河, 等. 氧化钇掺杂对Al2O3块状气凝胶结构与性能的影响[J]. 硅酸盐通报, 2010, 29(5):1002-1006.
|
[35] |
AL-YASSIR N, MAO R. Thermal stability of alumina aerogel doped with yttrium oxide,used as a catalyst support for the thermocatalytic cracking (TCC) process: An investigation of its textural and structural properties[J]. Applied Catalysis A General, 2007, 317(2):275-283.
DOI
URL
|
[36] |
JOHNSON M. Surface area stability of aluminas[J]. Journal of Catalysis, 1990, 123(1):245-259.
DOI
URL
|
[37] |
BEGUIN B, GARBOWSKI E, PRIMET M. Stabilization of alumina toward thermal sintering by silicon addition[J]. Journal of Catalysis, 1991, 127(2):595-604.
DOI
URL
|
[38] |
OSAKI T, NAGASHIMA K, WATARI K, et al. Silica-doped alumina cryogels with high thermal stability[J]. Journal of Non-crystalline Solids, 2007, 353(24-25):2436-2442.
DOI
URL
|