[1] SONG N N,GAO Z,ZHANG Y Y,et al.B4C nanoskeleton enabled,flexible lithium-sulfur batteries[J].Nano Energy,2019,58:30-39. [2] SONG N N,GAO Z,LI X D.Tailoring nanocomposite interfaces with graphene to achieve high strength and toughness[J].Science Advances,2020,6(42):1-10. [3] XU Z L,XIE Y J,EBRAHIMNIA M,et al. Effect of B4C nanoparticles on microstructure and properties of laser cladded IN625 coating[J].Surface & Coatings Technology,2021,416:127154-127164. [4] ZHANG W.A review of tribological properties for boron carbide ceramics[J].Progress in Materials Science,2021,116:100718.1-100718.47. [5] REDDY K M,GUO D E,SONG S X,et al.Dislocation-mediated shear amorphization in boron carbide[J].Science Advances,2021,7(8):1-7. [6] SURI A,SUBRAMANIAN C,SONBER J,et al. Synthesis and consolidation of boron carbide:a review[J].International Materials Reviews,2010,55(1):4-40. [7] 邹鑫,陈平安,徐广平,等.碳化硼材料的烧结致密化及其应用研究进展[J].耐火材料,2022,56(5):452-457. [8] 林宗寿.无机非金属材料工学[M].4版.武汉:武汉理工大学出版社,2013:50-52. [9] 龚江宏.陶瓷材料脆性断裂的显微结构效应[J].现代技术陶瓷,2021,42(Z2):287-428. [10] 姚万凯,鄢俊兵,李享成,等.B4C陶瓷中原位生成TiB2及其对力学性能的强化机制[J].硅酸盐学报,2022,50(9):2414-2421. [11] ÜNSAL H,GRASSO S,KOVALCÍKOVÁ A,et al.In-situ graphene platelets formation and its suppression during reactive spark plasma sintering of boron carbide/titanium diboride composites[J].Journal of the European Ceramic Society,2021,41(13):6281-6289. [12] KHAJEHZADEH M,EHSANI N,BAHARVANDI H R,et al.Thermodynamical evaluation,microstructural characterization and mechanical properties of B4C-TiB2 nanocomposite produced by in-situ reaction of nano-TiO2[J].Ceramics International,2020,46(17):26970-26984. [13] YAO W,YAN J,LI X,et al.In situ ZrB2 formation in B4C ceramics and its strengthening mechanism on mechanical properties[J].Materials,2022,15(22):7961. [14] LIN X,AI S H,FENG Y R,et al.Fabrication and properties of in-situ pressureless-sintered ZrB2/B4C composites[J].Ceramics International,2017,43(17):15593-15596. [15] XIONG Y,DU X W,XIANG M Y,et al.Densification mechanism during reactive hot pressing of B4C-ZrO2 mixtures[J].Journal of the European Ceramic Society,2018,38(12):4167-4172. [16] BASKUT S,OZER S C,TURAN S.The effects of in-situ formed phases on the microstructure,mechanical properties and electrical conductivity of spark plasma sintered B4C containing Y2O3[J].Journal of the European Ceramic Society,2022,42(4):1272-1281. [17] WANG L Y,WANG S,XING P F,et al.High-performance B4C-YB4 composites fabricated with Y2O3 additive via hot-pressing sintering[J].Ceramics International,2022,48(11):15647-15656. [18] YANG M S,ZHUANG Y X,XING P F.High-performance B4C-LaB6 composite ceramics fabricated via hot-pressing sintering with La2O3 as sintering additive[J].Ceramics International,2021,47(23):32675-32684. [19] SO S M,CHOI W H,KIM K H,et al.Mechanical properties of B4C-SiC composites fabricated by hot-press sintering[J].Ceramics International,2020,46(7):9575-9581. [20] ZHANG Z X,DU X W,LI Z L,et al.Microstructures and mechanical properties of B4C-SiC intergranular/intragranular nanocomposite ceramics fabricated from B4C,Si,and graphite powders[J].Journal of the European Ceramic Society,2014,34(10):2153-2161. [21] PEREVISLOV S N,LYSENKOV A S,VIKHMAN S V.Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C[J].Inorganic Materials,2017,53(4):376-380. [22] DING X,PAN K K,LIU Z T,et al.Effects of TiC particle size on microstructures and mechanical properties of B4C-TiB2 composites prepared by reactive hot-press sintering of TiC-B mixtures[J].Ceramics International,2020,46(8):10425-10430. [23] GUO W C,WANG A Y,HE Q L,et al.Microstructure and mechanical properties of B4C-TiB2 ceramic composites prepared via a two-step method[J].Journal of the European Ceramic Society,2021,41(14):6952-6961. [24] ZHAO J,TANG C,LI Q, et al.B4C-TiB2 composites fabricated by hot pressing TiC-B mixtures:The effect of B excess[J].Ceramics International,2022,48(9):11981-11987. [25] WEN G,LI S B,ZHANG B S,et al.Processing of in situ toughened B-W-C composites by reaction hot pressing of B4C and WC[J].Scripta Materialia,2000,43(9):853-857. [26] YIN J,HUANG Z R,LIU X J,et al.Microstructure,mechanical and thermal properties of in situ toughened boron carbide-based ceramic composites co-doped with tungsten carbide and pyrolytic carbon[J].Journal of the European Ceramic Society,2013,33(10):1647-1654. [27] LI X G,JIANG D L,ZHANG J X,et al.Pressureless sintering of boron carbide with Cr3C2 as sintering additive[J].Journal of the European Ceramic Society,2014,34(5):1073-1081. [28] RUTKOWSKI P.Mechanical and thermal properties of hot pressed B4C-Cr3C2-hBN materials[J].Journal of the European Ceramic Society,2014,34(14):3413-3419. [29] HWANG C,DIPIETRO S,XIE K Y,et al.Small amount TiB2 addition into B4C through sputter deposition and hot pressing[J].Journal of the American Ceramic Society,2019,102(8):4421-4426. [30] DUDINA D V,HULBERT D M,JIANG D,et al.In situ boron carbide-titanium diboride composites prepared by mechanical milling and subsequent spark plasma sintering[J].Journal of Materials Science,2008,43(10):3569-3576. [31] NIKZAD L,ORRÙ R,LICHERI R,et al.Fabrication and formation mechanism of B4C-TiB2 composite by reactive spark plasma sintering using unmilled and mechanically activated reactants[J].Journal of the American Ceramic Society,2012,95(11):3463-3471. [32] HE R J,JING L,QU Z L,et al.Effects of ZrB2 contents on the mechanical properties and thermal shock resistance of B4C-ZrB2 ceramics[J].Materials & Design,2015,71:56-61. [33] GUO W M,WU L,YOU Y,et al.Three-step reactive hot pressing of B4C-ZrB2 ceramics[J].Journal of the European Ceramic Society,2016,36(4):951-957. [34] REHMAN S S,JI W,FU Z Y,et al.In situ synthesis and sintering of B4C/ZrB2 composites from B4C and ZrH2 mixtures by spark plasma sintering[J].Journal of the European Ceramic Society,2015,35(4):1139-1145. [35] SAIRAM K,SONBER J,MURTHY T C,et al.Development of B4C-HfB2 composites by reaction hot pressing[J].International Journal of Refractory Metals and Hard Materials,2012,35:32-40. [36] TU R,LI N,LI Q Z,et al.Effect of microstructure on mechanical,electrical and thermal properties of B4C-HfB2 composites prepared by arc melting[J].Journal of the European Ceramic Society,2016,36(16):3929-3937. [37]DEMIRSKYI D,SAKKA Y,VASYLKIV O.High-strength B4C-TaB2 eutectic composites obtained via in situ by spark plasma sintering[J].Journal of the American Ceramic Society,2016,99(7):2436-2441. [38]DEMIRSKYI D,VASYLKIV O.Analysis of the high-temperature flexural strength behavior of B4C-TaB2 eutectic composites produced by in situ spark plasma sintering[J].Materials Science & Engineering A,2017,697:71-78. [39] GU J F,ZOU J,MA P Y,et al.Reactive sintering of B4C-TaB2 ceramics via carbide boronizing:Reaction process,microstructure and mechanical properties[J].Journal of Materials Science & Technology,2019,35(12):2840-2850. [40] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191. [41] WANG A Y,LIU C,HU L X,et al.Effects of processing on mechanical properties of B4C-graphene composites fabricated by hot pressing[J].Materials Science & Engineering A,2021,808:140872. [42] HU L X,WANG W M,HE Q L,et al.Preparation and characterization of reduced graphene oxide-reinforced boron carbide ceramics by self-assembly polymerization and spark plasma sintering[J].Journal of the European Ceramic Society,2020,40(3):612-621. [43] YIN Z B,YUAN J T,CHEN M D,et al.Mechanical property and ballistic resistance of graphene platelets/B4C ceramic armor prepared by spark plasma sintering[J].Ceramics International,2019,45(17):23781-23787. [44] SUN J C,NIU B,REN L,et al.Densification and mechanical properties of boron carbide prepared via spark plasma sintering with cubic boron nitride as an additive[J].Journal of the European Ceramic Society,2020,40(4):1103-1110. [45] LI X Q,GAO Y M,PAN W,et al.Fabrication and characterization of B4C-based ceramic composites with different mass fractions of hexagonal boron nitride[J].Ceramics International,2015,41(1):27-36. [46] YAVAS B,SAHIN F,YUCEL O,et al.Effect of particle size,heating rate and CNT addition on densification,microstructure and mechanical properties of B4C ceramics[J].Ceramics International,2015,41(7):8936-8944. [47] DEVRIES M,SUBHASH G.Influence of carbon nanotubes as secondary phase addition on the mechanical properties and amorphization of boron carbide[J].Journal of the European Ceramic Society,2019,39(6):1974-1983. [48] ZHOU Y R,JIAO J,YANG J H, et al.Growth of lamellar Ti3SiC2 in SiC matrix by the reaction of Si melt with C-TiC preform[J].Materials Chemistry and Physics,2021,267:124665. [49] SONG Q,ZHANG Z H,HU Z Y,et al.Microstructure and mechanical properties of super-hard B4C ceramic fabricated by spark plasma sintering with (Ti3SiC2+ Si) as sintering aid[J].Ceramics International,2019,45(7):8790-8797. [50] YUE X Y,HUO M D,LIU J Q,et al.Microstructure and properties of bilayered B4C-based ceramics[J].Journal of the European Ceramic Society,2022,42(8):3404-3414. [51] TAN Y Q,LUO H,ZHANG H B,et al.Fabrication of toughened B4C composites with high electrical conductivity using MAX phase as a novel sintering aid[J].Ceramics International,2016,42(6):7347-7352. |