[1] 史振宇,刘晓文,宋来聪,等.航空发动机应用领域粉末高温合金的研究进展[J].中国粉体技术,2025,31(1):46-60. [2] 张宁波,温斯涵,张景琪,等.镍基高温合金增材制造技术及其在航天领域应用进展[J].航天制造技术,2024(2):7-15. [3] BEWLAY B P,NAG S,SUZUKI A,et al.TiAl alloys in commercial aircraft engines[J].Materials at High Temperatures,2016,33(4/5):549-559. [4] LIAO C J,LIU Q,MA X Z,et al.Relationship between surface heterogeneity and electrochemical interface behavior of the TiAl alloy electrode[J].The Journal of Physical Chemistry C,2019,123(1):473-484. [5] WU X H.Review of alloy and process development of TiAl alloys[J].Intermetallics,2006,14(10/11):1114-1122. [6] 张北江,黄烁,张文云,等.变形高温合金盘材及其制备技术研究进展[J].金属学报,2019,55(9):1095-1114. [7] 杜金辉,吕旭东,董建新,等.国内变形高温合金研制进展[J].金属学报,2019,55(9):1115-1132. [8] 杜金辉,赵光普,邓群,等.中国变形高温合金研制进展[J].航空材料学报,2016,36(3):27-39. [9] 尹志冬,戴斌煜,刘智彬,等.高温合金净化技术研究现状[J].铸造,2011,60(5):462-465. [10] 王刚,王来稳,袁波,等.高温合金精密铸造用坩埚的研究进展[J].耐火材料,2023,57(5):442-445. [11] WU T,ZHANG Q G,LU H,et al.Diffusion brazing of GH536 polycrystalline superalloy with IC10 single crystal superalloy using BNi-2 interlayer[J].Journal of Materials Research and Technology,2023,24:9850-9865. [12] 刘吕果.DZ22B高温合金与精铸陶瓷材料界面反应研究[D].南昌:南昌航空大学,2018. [13] 姜兰.用于镍基高温合金熔炼氧化锆耐火材料的研究[D].上海:上海大学,2017. [14] 宋庆忠.合金熔体与氧化物耐火材料界面反应研究[D].沈阳:东北大学,2021. [15] 张凤祥,张鹏,李怡,等.一种含锆高温合金与坩埚耐火材料的界面反应研究[J].真空,2023,60(3):80-85. [16] 张生庭.AlN/BN复合陶瓷的制备及其与TiAl熔体的界面反应[D].广州:华南理工大学,2023. [17] GROSU Y,BONDARCHUK O,FAIK A.The effect of humidity,impurities and initial state on the corrosion of carbon and stainless steels in molten HitecXL salt for CSP application[J].Solar Energy Materials and Solar Cells,2018,174:34-41. [18] GU K Z,DOGAN N,COLEY K S.The effect of sulfur concentration in the metal on the mass transfer of phosphorus in bloated metal droplets[J].Steel Research International,2018,89(5):1700450. [19] MCDOWELL D L,DUNNE F P E.Microstructure-sensitive computational modeling of fatigue crack formation[J].International Journal of Fatigue,2010,32(9):1521-1542. [20] JIANG J,YANG J,ZHANG T T,et al.On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction[J].Acta Materialia,2015,97:367-379. [21] STORGÄRDS E,SAARIMÄKI J,SIMONSSON K,et al.Influence of superimposed vibrational load on dwell time crack growth in a Ni-based superalloy[J].International Journal of Fatigue,2016,87:301-310. [22] CHAN K S.A fatigue life model for predicting crack nucleation at inclusions in Ni-based superalloys[J].Metallurgical and Materials Transactions A,2020,51(3):1148-1162. [23] CUI R J,GAO M,ZHANG H,et al.Interactions between TiAl alloys and yttria refractory material in casting process[J].Journal of Materials Processing Technology,2010,210(9):1190-1196. [24] ZHANG C,MACDONALD B E,GUO F W,et al.Cold-workable refractory complex concentrated alloys with tunable microstructure and good room-temperature tensile behavior[J].Scripta Materialia,2020,188:16-20. [25] TAJNE A,GUPTA T V K,RAMANI H,et al.A critical review on the machinability aspects of nickel and cobalt based superalloys in turning operation used for aerospace applications[J].Advances in Materials and Processing Technologies,2024,10(2):833-866. [26] PRAVEEN K V U,SASTRY G V S,SINGH V.Work-hardening behavior of the Ni-Fe based superalloy IN718[J].Metallurgical and Materials Transactions A,2008,39(1):65-78. [27] KWONG J,AXINTE D A,WITHERS P J,et al.Minor cutting edge-workpiece interactions in drilling of an advanced nickel-based superalloy[J].International Journal of Machine Tools and Manufacture,2009,49(7/8):645-658. [28] MAKTOUF W,AMMAR K,BEN NACEUR I,et al.Multiaxial high-cycle fatigue criteria and life prediction:Application to gas turbine blade[J].International Journal of Fatigue,2016,92:25-35. [29] 姜卫国,郭万军,董琳,等.氧化铝坩埚与高温合金的界面反应机制[J].特种铸造及有色合金,2023,43(3):308-313. [30] 李靖,蒋世川,戚慧琳,等.GH4169真空感应过程夹杂物的演变机制[J].钢铁钒钛,2023,44(3):159-164. [31] GAO X Y,ZHANG L,QU X H,et al.Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting[J].International Journal of Minerals,Metallurgy and Materials,2020,27(11):1551-1559. [32] 宋庆忠,潜坤,舒磊,等.镍基高温合金K417G与氧化物耐火材料的界面反应[J].金属学报,2022,58(7):868-882. [33] LIU Y S,GAO Y Y,WANG E H,et al.Interaction between CA6-MA crucible and molten wrought Ni-based superalloys[J].Journal of the European Ceramic Society,2023,43(4):1714-1722. [34] 陈晓燕,金喆,白雪峰,等.C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响[J].金属学报,2015,51(7):853-858. [35] SAHA R L,NANDY T K,MISRA R D K,et al.Evaluation of the reactivity of titanium with mould materials during casting[J].Bulletin of Materials Science,1989,12(5):481-493. [36] FRENZEL J,ZHANG Z,NEUKING K,et al.High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles[J].Journal of Alloys and Compounds,2004,385(1/2):214-223. [37] GOMES F,BARBOSA J,RIBEIRO C S.Induction melting of γ-TiAl in CaO crucibles[J].Intermetallics,2008,16(11/12):1292-1297. [38] TETSUI T,KOBAYASHI T,MORI T,et al.Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy[J].Materials Transactions,2010,51(9):1656-1662. [39] FARAN E,GOTMAN I,GUTMANAS E Y.Experimental study of the reaction zone at boron nitride ceramic–Ti metal interface[J].Materials Science and Engineering:A,2000,288(1):66-74. [40] 陈光耀,程治玮,王树森,等.高活性钛熔体与BaZrO3耐火材料界面反应机理[J].硅酸盐学报,2016,44(6):890-895. [41] CHEN G Y,YU F H,HOU X,et al.Performance of BaZrO3/Y2O3 dual-phase refractory applied to TiAl alloy melting[J].Ceramics International,2022,48(14):20158-20167. [42] GUI N,MENG D,LU X,et al.Assessment of BaO-CaO-ZrO2 ternary system and its application in design of new refractories [J].Hot Work Technol,2015,44(7):98-107. [43] CHEN G Y,KANG J Y,LAN B B,et al.Evaluation of Ca-doped BaZrO3 as the crucible refractory for melting TiAl alloys[J].Ceramics International,2018,44(11):12627-12633. [44] BIAN F L,CAI Z Y,LIU J,et al.Preparation of Sr2CeZrO6 refractory and its interaction with TiAl alloy[J].Materials,2023,16(23):7298. [45] 潘元帅,王刚,冯海霞,等.结合剂种类对刚玉-尖晶石浇注料抗镍基高温合金侵蚀性能的影响[J].耐火材料,2023,57(3):220-225. [46] SHI B,DHIR V K.Molecular dynamics simulation of the contact angle of liquids on solid surfaces[J].Journal of Chemical Physics,2009,130(3):034705. [47] 潘元帅,王刚,冯海霞,等.镍基高温合金与耐火材料界面特性研究 [J].材料导报,2025,39(3):224-230. [48] ZHENG Y P,FANG Z,SUN Q,et al.Computational discovery of the qualitative electronegativity-wettability relationship in high-temperature ceramics-supported TiAl alloys[J].The Journal of Physical Chemistry C,2022,126(4):2207-2213. |