[1] |
XIAO J L, CHEN J F, WEI Y W, et al. Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1 100-1 500 ℃ range[J]. Ceramics International, 2019, 45(17):21099-21107.
DOI
URL
|
[2] |
RASTEGAR H, BAVAND-VANDCHALI M, NEMATI A, et al. Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin[J]. Ceramics International, 2019, 45(3):3390-3406.
DOI
URL
|
[3] |
EWAIS M, MOHOAMED E. Carbon based refractories[J]. Journal of the Ceramic Society of Japan, 2004, 112(1310):517-532.
DOI
URL
|
[4] |
CAO G L, DENG C J, CHEN Y, et al. Influence of sintering process and interfacial bonding mechanism on the mechanical properties of MgO-C refractories[J]. Ceramics International, 2020, 46(10):16860-16866.
DOI
URL
|
[5] |
BAHTLI T, HOPA D Y, BOSTANCI V M, et al. Investigation of thermal shock behaviour of MgO-C refractories by incorporation of pyrolytic liquid as a binder[J]. Materials Chemistry and Physics, 2018, 213:14-22.
DOI
URL
|
[6] |
HU S Y, ZHU R, LIU R Z, et al. Decarburisation behaviour of high-carbon MgO-C refractories in O2-CO2 oxidising atmospheres[J]. Ceramics International, 2018, 44(17):20641-20647.
DOI
URL
|
[7] |
ZHU T, LI Y, SANG S, et al. Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets[J]. Materials and Design, 2017, 124(6):16-23.
DOI
URL
|
[8] |
LIU Z Y, YUAN L, YU J K, et al. Improvements in the mechanical properties and oxidation resistance of MgO-C refractories with the addition of nano-Y2O3 powder[J]. Advances in Applied ceramics, 2019, 118(5):249-256.
DOI
URL
|
[9] |
CHEN J F, LI N, HUBALKOVA J, et al. Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: Antioxidant or alternative carbon source?[J]. Journal of the European Ceramic Society, 2018, 38(9):3387-3394.
DOI
URL
|
[10] |
ZHANG J, LI C, GONG W, et al. First-principles simulation of the growth of in situ synthesised β-Sialon and its effects on the thermo-mechanical properties of Al2O3-C refractory composites[J]. Journal of the European Ceramic Society, 2019, 39(8):2739-2747.
DOI
URL
|
[11] |
WANG J, DENG X, DU S, et al. Carbon nanotube reinforced ceramic composites:a review[J]. International Ceramic Review, 2014, 63(6):286-289.
|
[12] |
LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
DOI
URL
|
[13] |
ZHU B Q, WEI G P, LI X C, et al. Preparation and growth mechanism of carbon nanotubes via catalytic pyrolysis of phenol resin[J]. Materials Research Innovations, 2014, 18(4):267-272.
|
[14] |
WANG J K, DENG X G, ZHANG H J, et al. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin[J]. Physica E, 2017, 86:24-35.
DOI
URL
|
[15] |
YIN C F, LI X C, CHEN P A, et al. Thermo-mechanical properties of Al2O3-C refractories with in situ synthesized non-oxide bonding phases[J]. Ceramics International, 2019, 45(6):7427-7436.
DOI
URL
|
[16] |
ZHU T, LI Y, SANG S, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories[J]. Ceramics International, 2014, 40(3):4333-4340.
DOI
URL
|
[17] |
王军凯, 邓先功, 张海军, 等. 碳纳米管增强碳复合耐火材料的研究进展[J]. 耐火材料, 2016, 50(2):150-154.
|
[18] |
WANG J Q, SHEN B X, LAN M C, et al, Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics:The influence of catalyst and reaction pressure[J]. Catalysis Today, 2020, 351:50-57.
DOI
URL
|