[1] |
WENG Q H, WANG X B, BANDO Y, et al. One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage[J]. Advanced Energy Materials, 2014, 4(7):1301525.
DOI
URL
|
[2] |
CHEN J, HUANG X Y, ZHU Y K, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials, 2017, 27(5):1604754.
DOI
URL
|
[3] |
何江锋, 张海军, 葛胜涛, 等. SiC多孔陶瓷制备方法研究进展[J]. 耐火材料, 2020, 54(2):163-171.
|
[4] |
任鑫明, 马北越, 张亚然, 等. 煅烧温度对聚合物模板法制备SiC-Al2O3多孔陶瓷性能的影响[J]. 耐火材料, 2018, 52(3):196-198+202.
|
[5] |
胡昆鹏. 高比表面氮化硼(BN)的制备及应用性能研究[D]. 武汉: 湖北工业大学, 2013.
|
[6] |
YIN J, LI X M, ZHOU J X, et al. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity[J]. Nano Letters, 2013, 13(7):3232-3236.
DOI
URL
|
[7] |
FANG H M, BAI S L. 3D boron nitride foam reinforced flexible insulated polymer with high thermal conductivity[C]// 第二十一届国际复合材料大会论文集,西安, 2017:2-8.
|
[8] |
JIA QR, SHI L. Synthesis and thermal transport properties of high-surface area hexagonal boron nitride foam structures[J]. International Journal of Heat and Mass Transfer, 2020, 161:120268.
DOI
URL
|
[9] |
SONG Y, LI B, Yang S, et al. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition[J]. Scientific Reports, 2015, 5:10337.
DOI
URL
|
[10] |
XUE Y M, ZHOU X, ZHAN T Z, et al. Densely interconnected porous BN frameworks for multifunctional and isotropically thermoconductive polymer composites[J]. Advanced Functional Materials, 2018, 28(29):1801205.
DOI
URL
|
[11] |
PHAM T, GOLDSTEIN A P, LEWICKI J P, et al. Nanoscale structure and superhydrophobicity of sp2-bonded boron nitride aerogels[J]. Nanoscale, 2015, 7(23):10449-10458.
DOI
URL
|
[12] |
ZETTL A K, ROUSSEAS M, GOLDSTEIN A P, et al. Crystalline boron nitride aerogels,US9840414[P]. 2017-12-12.
|
[13] |
KUTTY G R, SREEJITH S, KONG X H, et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake[J]. Nano Research, 2018, 11(12):6325-6335.
DOI
URL
|
[14] |
XUE Y M, DAI P C, ZHOU M, et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures[J]. ACS Nano, 2017, 11(1):558-568.
DOI
URL
|
[15] |
MALEKI M, SHOKOUHIMEHR M, KARIMIAN H, et al. Three-dimensionally interconnected porous boron nitride foam derived from polymeric foams[J]. RSC Advances, 2016, 6(56):51426-51434.
DOI
URL
|
[16] |
HAN W, GE C, ZHANG R, et al. Boron nitride foam as a polymer alternative in packaging phase change materials:Synthesis,thermal properties and shape stability[J]. Applied Energy, 2019, 238:942-951.
DOI
URL
|
[17] |
石存兰, 薛文东, 刘晓光, 等. 冷冻速率对冻干法制备BN多孔陶瓷显微结构的影响[J]. 耐火材料, 2017, 51(4):241-245.
|
[18] |
石存兰, 薛文东, 刘晓光, 等. 冻干法制备多孔氮化硼陶瓷及其成孔机理[J]. 硅酸盐学报, 2015, 43(12):1701-1705.
|
[19] |
LEI W W, MOCHALIN V N, LIU D, et al. Boron nitride colloidal solutions,ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization[J]. Nature Communications, 2015, 6(1):1-8.
|
[20] |
SUDEEP P M, VINOD S, OZDEN S, et al. Functionalized boron nitride porous solids[J]. RSC advances, 2015, 5(114):93964-93968.
DOI
URL
|
[21] |
OWUOR P S, PARK O K, WOELLNER C F, et al. Lightweight hexagonal boron nitride foam for CO2 absorption[J]. ACS nano, 2017, 11(9):8944-8952.
DOI
URL
|
[22] |
WANG J M, LIU D, LI Q X, et al. Lightweight,superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation[J]. ACS Nano, 2019, 13(7):7860-7870.
DOI
URL
|
[23] |
QIAN Z, SHEN H, FANG X, et al. Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability[J]. Energy and Buildings, 2018, 158:1184-1188.
DOI
URL
|
[24] |
KASHFIPOUR M A, DENT R S, MEHRA N, et al. Directional xylitol crystal propagation in oriented micro-channels of boron nitride aerogel for isotropic heat conduction[J]. Composites Science and Technology, 2019, 182:107715.1-107715.10.
|
[25] |
LIN J, YUAN X H, LI G, et al. Self-assembly of porous boron nitride microfibers into ultralight multifunctional foams of large sizes[J]. ACS Applied Materials &Interfaces, 2017, 9(51):44732-44739.
|
[26] |
LI G Y, ZHU M Y, GONG W B, et al. Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1 000 ℃[J]. Advanced Functional Materials, 2019, 29(20):1900188.
DOI
URL
|
[27] |
PAN J, WANG J. Boron nitride aerogels consisting of varied superstructures[J]. Nanoscale Advances, 2020, 2(1):149-155.
DOI
URL
|
[28] |
ZHAO H J, SONG X F, ZENG H B. 3D white graphene foam scavengers:vesicant-assisted foaming boosts the gram-level yield and forms hierarchical pores for superstrong pollutant removal applications[J]. NPG Asia Materials, 2015, 7(3):168.
|
[29] |
JIANG H, MA L, et al. Three-dimensional porous boron nitride foam for effective CO2 adsorption[J]. Solid State Communications, 2019, 294:1-5.
DOI
URL
|
[30] |
XUE Y, DAI P, JIANG X, et al. Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification[J]. Journal of Materials Chemistry A, 2016, 4(4):1469-1478.
DOI
URL
|
[31] |
XU X W, HU R C, CHEN M Y, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach[J]. Chemical Engineering Journal, 2020, 397:125447.
DOI
URL
|
[32] |
TIAN Z, SUN J, WANG S, et al. A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride[J]. Journal of Materials Chemistry A, 2018, 6(36):17540-17547.
DOI
URL
|