Refractories ›› 2021, Vol. 55 ›› Issue (4): 354-359.DOI: 10.3969/j.issn.1001-1935.2021.04.018
Previous Articles Next Articles
Gao Jinghong1)(), Shi Yuchen1), Yu Guangsuo1,2), Su Weiguang1)(
), Li Yao3), Zhang Junxian3)
Received:
2020-10-08
Online:
2021-08-15
Published:
2021-08-22
Contact:
Su Weiguang
高靖红1)(), 史雨晨1), 于广锁1,2), 苏暐光1)(
), 李耀3), 张俊先3)
通讯作者:
苏暐光
作者简介:
高靖红:女,1996年生,硕士研究生。E-mail: gjh126998@163.com
基金资助:
CLC Number:
Gao Jinghong, Shi Yuchen, Yu Guangsuo, Su Weiguang, Li Yao, Zhang Junxian. Research progress on slag corrosion resistance of oxide-based refractories[J]. Refractories, 2021, 55(4): 354-359.
高靖红, 史雨晨, 于广锁, 苏暐光, 李耀, 张俊先. 氧化物基耐火材料抗熔渣侵蚀研究进展[J]. 耐火材料, 2021, 55(4): 354-359.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.nhcl.cn/EN/10.3969/j.issn.1001-1935.2021.04.018
[1] | GAGLIARDI M. Materials with market value: global ceramic and glass industry poised to reach MYM1 trillion[J]. American Ceramic Society Bulletin, 2017, 96(3):27-37. |
[2] | HEDRICK W L. Toward a “greener” future with advanced refractories[J]. American Ceramic Society Bulletin, 2013, 92(7):28-31. |
[3] | 柯昌明, 李有奇, 赵继增, 等. 不同煤熔渣对水煤浆加压气化炉用高铬砖的侵蚀[J]. 耐火材料, 2014, 48(5):321-326. |
[4] | LEE W E, ZHANG S. Melt corrosion of oxide and oxide-carbon refractories[J]. Metallurgical Reviews, 1999, 44(3):77-104. |
[5] |
TANG H Y, WU G H, WANG Y, et al. Comparative evaluation investigation of slag corrosion on Al2O3 and MgO-Al2O3 refractories via experiments and thermodynamic simulations[J]. Ceramics International, 2017, 43(18):16502-16511.
DOI URL |
[6] |
ZHANG W X, HUANG A, ZOU Y S, et al. Corrosion modeling of magnesia aggregates in contact with CaO-MgO-SiO2 slags[J]. Journal of the American Ceramic Society, 2020, 103(3):2128-2136.
DOI URL |
[7] |
WANG W L, XUE L W, ZHANG T S, et al. Thermodynamic corrosion behavior of Al2O3,ZrO2 and MgO refractories in contact with high basicity refining slag[J]. Ceramics International, 2019, 45(16):20664-20673.
DOI URL |
[8] |
SONG J Q, LIU Y J, LV X M, et al. Corrosion behavior of Al2O3 substrate by SiO2-MgO-FeO-CaO-Al2O3 slag[J]. Journal of Materials Research and Technology, 2020, 9(1):314-321.
DOI URL |
[9] | GUHA J P. Reaction chemistry in dissolution of polycrystalline alumina in lime-alumina-silica slag[J]. British Ceramic Transactions, 1997, 96(6):231-236. |
[10] |
TANG H Y, WU G H, WANG Y, et al. Comparative evaluation investigation of slag corrosion on Al2O3 and MgO-Al2O3 refractories via experiments and thermodynamic simulations[J]. Ceramics International, 2017, 43(18):16502-16511.
DOI URL |
[11] |
FU L P, GU H Z, HUANG A, et al. Slag resistance mechanism of lightweight microporous corundum aggregate[J]. Journal of the American Ceramic Society, 2015, 98(5):1658-1663.
DOI URL |
[12] | 马三宝, 鄢文, 林小丽, 等. 钢包渣对轻质方镁石-镁铝尖晶石耐火材料的侵蚀机理[J]. 硅酸盐学报, 2018, 46(3):443-448. |
[13] |
DAI Y X, LI J, YAN W, et al. Corrosion mechanism and protection of BOF refractory for high silicon hot metal steelmaking process[J]. Journal of Materials Research and Technology, 2020, 9(3):4292-4308.
DOI URL |
[14] | HUANG F, LIU C, MARUOKA N, et al. Dissolution behaviour of MgO based refractories in CaO-Al2O3-SiO2 slag[J]. Ironmaking & Steelmaking, 2015, 42(7):553-560. |
[15] | MATSUI T, HIRAGUSHI K, IKEMOTO T, et al. Corrosion of magnesia refractory brick by silicate slag[J]. Technical Association Refractories Japan, 2003, 23(1):11-14. |
[16] |
HAN J S, KANG J G, SHIN J H, et al. Influence of CaF2 in calcium aluminate-based slag on the degradation of magnesia refractory[J]. Ceramics International, 2018, 44(11):13197-13204.
DOI URL |
[17] |
MUKAI K, TAO Z, GOTO K, et al. In-situ observation of slag penetration into MgO refractory[J]. Scandinavian Journal of Metallurgy, 2002, 31(1):68-78.
DOI URL |
[18] |
ZHANG W X, HUANG A, ZOU Y S, et al. Corrosion modeling of magnesia aggregates in contact with CaO-MgO-SiO2 slags[J]. Journal of the American Ceramic Society, 2020, 103(3):2128-2136.
DOI URL |
[19] |
HIMPEL G, HERRMANN M, HÖHN S. Comparison of the high-temperature corrosion of aluminium nitride,alumina,magnesia and zirconia ceramics by coal ashes[J]. Ceramics International, 2015, 41(7):8288-8298.
DOI URL |
[20] |
CHEN G, LING Y Q, LI Q N, et al. Stability properties and structural characteristics of CaO-partially stabilized zirconia ceramics synthesized from fused ZrO2 by microwave sintering[J]. Ceramics International, 2020, 46(10):16842-16848.
DOI URL |
[21] | SONG L C, LIN Y, ZHONG Q F, et al. Corrosion resistance mechanism of MgO-ZrO2 brick in RH degasser slag[J]. Advanced Materials Research, 2012, 1583:2048-2052. |
[22] |
WANG C, YU J K, YUAN L. Reaction mechanism of MgO-ZrO2 refractory with CaO-SiO2-Al2O3-FetO slag[J]. Materials Research Innovations, 2014, 18(S2):S2.498- S2.503.
DOI URL |
[23] |
CHEN L G, MALFLIET A, VLEUGELS J, et al. Degradation mechanisms of alumina-chromia refractories for secondary copper smelter linings[J]. Corrosion Science, 2018, 136:409-417.
DOI URL |
[24] |
CAI B L, LI H X, ZHAO S X, et al. Corrosion of high chromia refractory materials by basic coal slag under simulated coal gasification atmosphere[J]. Ceramics International, 2018, 44(5):4592-4602.
DOI URL |
[25] |
CHEN D, HUANG A, GU H, et al. Corrosion of Al2O3-Cr2O3 refractory lining for high-temperature solid waste incinerator[J]. Ceramics International, 2015, 41(10):14748-14753.
DOI URL |
[26] |
ZHOU Z J, BO Y, ZHANG Y W, et al. Interactions of high-chromia refractory materials with infiltrating coal slag in the oxidizing atmosphere of a cyclone furnace[J]. Ceramics International, 2014, 40(3):3829-3839.
DOI URL |
[27] |
CHEN J F, XIAO J L, ZHANG Y, et al. Corrosion mechanism of Cr2O3-Al2O3-ZrO2 refractories in a coal-water slurry gasifier:A post-mortem analysis[J]. Corrosion Science, 2019, 163:108250.
DOI URL |
[28] |
CHO M K, HONG G G, LEE S K. Corrosion of spinel clinker by CaO-Al2O3-SiO2 ladle slag[J]. Journal of the European Ceramic Society, 2002, 22(11):1783-1790.
DOI URL |
[29] |
MARTINEZ G T A, LUZ A P, BRAULIO M A L, et al. Revisiting CA6 formation in cement-bonded alumina-spinel refractory castables[J]. Journal of the European Ceramic Society, 2017, 37(15):5023-5034.
DOI URL |
[30] | JUNMO J, KANG Y, PARK J H, et al. Corrosion-erosion behavior of MgAl2O4 spinel refractory in contact with high MnO slag[J]. Ceramics International, 2017, 17(43):15074-15079. |
[31] |
LUZ A P, MARTINEZ G T A, BRAULIO M A L, et al. Thermodynamic evaluation of spinel containing refractory castables corrosion by secondary metallurgy slag[J]. Ceramics International, 2011, 37(4):1191-1201.
DOI URL |
[32] | 曹雨后, 李红霞, 徐恩霞, 等. 煤熔渣对镁铝尖晶石质耐火材料的侵蚀机制[J]. 耐火材料, 2018, 52(1):19-22. |
[33] | 蒋坤, 王蝉娜, 屈天鹏, 等. 电场作用下镁碳耐火材料在氧化性渣中的侵蚀行为[J]. 材料科学与工程学报, 2019, 37(3):392-396. |
[34] | HUANG F, LIU C, MARUOKA N, et al. Dissolution behaviour of MgO based refractories in CaO-Al2O3-SiO2 slag[J]. Ironmaking & Steelmaking, 2015, 42(7):553-560. |
[35] |
WAGNER C, WENZL C, GREGUREK D, et al. Thermodynamic and experimental investigations of high-temperature refractory corrosion by molten slags[J]. Metallurgical and Materials Transactions B, 2017, 48(1):119-1319.
DOI URL |
[36] |
CHEN M, GAO S, XU L, et al. High temperature mechanical and corrosion resistance of Fe-containing MgO-C refractory in oxidizing atmosphere[J]. Ceramics International, 2019, 45(16):21023-21028.
DOI URL |
[37] | 李享成, 王堂玺, 姜晓, 等. 电磁场对MgO-C耐火材料抗熔渣侵蚀性的影响[J]. 硅酸盐学报, 2011, 39(3):452-457. |
[38] |
LIU Z Y, YUAN L, JIN E D, et al. Wetting,spreading and corrosion behavior of molten slag on dense MgO and MgO-C refractory[J]. Ceramics International, 2019, 45(1):718-724.
DOI URL |
[39] |
LIU Z Y, YU J K, YUE S J, et al. Effect of carbon content on the oxidation resistance and kinetics of MgO-C refractory with the addition of Al powder[J]. Ceramics International, 2020, 46(3):3091-3098.
DOI URL |
[40] |
KUMAR A, KHANNA R, SPINK J, et al. Corrosion behavior of Al2O3-C refractories with casting mould meniscus slags at 1 550 ℃[J]. Steel Research International, 2016, 87(1):46-56.
DOI URL |
[41] |
KUMAR A, KHANNA R, SPINK J, et al. Fundamental investigations on the corrosion of ZrO2-C refractories during interaction with a casting mould meniscus slag[J]. Steel Research International, 2014, 85(7):1185-1193.
DOI URL |
[42] |
ZUO H B, WANG C, LIU Y L. Dissolution behavior of a novel Al2O3-SiC-SiO2-C composite refractory in blast furnace slag[J]. Ceramics International, 2017, 43(9):7080-7087.
DOI URL |
[43] |
REN X M, MA B Y, LI S M, et al. Slag corrosion characteristics of MgO-based refractories under vacuum electromagnetic field[J]. Journal of the Australian Ceramic Society, 2019, 55(2):913-920.
DOI URL |
[44] | REN X M, MA B Y, LI S M, et al. Comparison study of slag corrosion resistance of MgO-MgAl2O4,MgO-CaO and MgO-C refractories under electromagnetic field[J]. Journal of Iron and Steel Research International, 2020, 30:1-8. |
[1] | Yao Luyan, Han Bingqiang, Zhang Jinhua, Ke Changming. Effect of Ti-Si-Fe alloy addition on structure and properties of Si3N4 bonded SiC refractories [J]. Refractories, 2024, 58(4): 277-283. |
[2] | Liang Xiaocheng, Feng Yu, Liu Zhongfei, Luo Xudong, Huang Min, Wu Feng. Effect of pre-synthesized CaZrO3 on properties of magnesia-zirconia refractories [J]. Refractories, 2024, 58(3): 213-217. |
[3] | Shao Rongdan, Ju Maoqi, Cheng Shui-ming, Xia Changyong, Li Xuzhi, Zhang Han, Shan Jiangbo. Effect of boron oxide on mechanical properties of Al2O3-SiC-C castables [J]. Refractories, 2024, 58(3): 230-233. |
[4] | Liu Ran, Liu Yanting, Gao Yanjia, Deng Yong. Research progress on refractories for smelting reduction ironmaking process [J]. Refractories, 2024, 58(3): 251-256. |
[5] | Chen Tianren, Wang Zhanmin, Qin Hongbin, Liang Chengkai, Li Xuzhi. Research progress on hydrogen metallurgy process and refractories for hydrogen-based shaft furnaces [J]. Refractories, 2024, 58(3): 263-269. |
[6] | Deng Chengji, He Feng, Liang Yiming, Li Ji, Gao Chao, Mu Meng. Influence of TiO2 addition on phase composition and properties of porous SiC ceramics [J]. Refractories, 2024, 58(2): 93-98. |
[7] | Fu Qiqi, Zhong Lihua, Bai Wenxian, Gan Yongtong, Deng Junjie. Damage mechanism of magnesia-chrome refractories for side-blown copper smelting furnace [J]. Refractories, 2024, 58(2): 148-154. |
[8] | Xu Guotao, Wang Zhi-qiang, Qin Shimin, Liu Li, Zhang Honglei, Zhang Yanwen, Zhou Wangzhi. Development and application of new generation calcium hexaaluminate castables [J]. Refractories, 2024, 58(1): 53-56. |
[9] | Zhang Wei, Wang Jingyang. Application progress of mullite composite refractories [J]. Refractories, 2024, 58(1): 80-86. |
[10] | Li Bin, Liu Jie, Zhu Bo, Guo Yutao, Ren Bo, Feng Jisheng, Chen Junhong. Application and damage mechanism of CA6 refractories in transition zone of cement rotary kilns [J]. Refractories, 2023, 57(6): 479-483. |
[11] | Wang Minggang, Che Lianfang, Shi Chenglong, Yuan Hongwei, Liu Yongzhen. Configuration and application of refractories for titanium dioxide rotary kilns [J]. Refractories, 2023, 57(6): 504-507. |
[12] | Ding Jiahui, Zhang Li-xin, Deng Junjie, Liu Ping, Xu Enxia, Li Suping. Research progress of lining refractories for hazardous waste treatment incinerators [J]. Refractories, 2023, 57(6): 538-541. |
[13] | Yu Wuming, Mu Xin, Du Chuanming, Ma Beiyue, Yu Jingkun. Research progress of waste refractories used as ferrous metallurgy flux [J]. Refractories, 2023, 57(6): 542-545. |
[14] | Li Hongxia. Advanced refractories innovation boosts China’s strategy implementation [J]. Refractories, 2023, 57(5): 369-376. |
[15] | Wang Zhanmin, Cao Xiying, Wu Jiguang, Qin Hongbin, Li Zhigang, Yu Tongshu, Liu Jun, Liu Guoqi, Duan Binwen, Wang Ziqiang. New technology progress of refractories for iron and steel industry [J]. Refractories, 2023, 57(5): 377-385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||