[1] 李少飞,顾华志,黄奥,等.钢铁行业氢冶金技术的发展初探[J].耐火材料,2021,55(4):360-363. [2] TANG J.Development and progress on hydrogen metallurgy[J].International Journal of Minerals,Metallurgy and Materials,2020,27(6):713. [3] 徐万仁,朱仁良,毛晓明,等.国内外氢冶金发展现状及需要研究解决的主要问题[C]//第十三届中国钢铁年会论文集,北京,2022:507-519. [4] 王晶,王朋.国内外氢冶金技术研究进展[J].河北冶金,2022(4):1-5. [5] 仲蕊.钢铁企业谋求以氢代碳[N].中国能源报,2022-09-05(018). [6] 鲁雄刚,张玉文,祝凯,等.氢冶金的发展历程与关键问题[J].自然杂志,2022,44(4):251-266. [7] 李星国,欧阳明智,彭泽清.氢冶金研发及发展动态[J].金属材料与冶金工程,2022,50(1):40-46. [8] 郭学益,陈远林,田庆华,等.氢冶金理论与方法研究进展[J].中国有色金属学报,2021,31(7):1891-1906. [9] 王兆才.氧化球团气基竖炉直接还原的基础研究[D].沈阳:东北大学,2009. [10] 张宝东.高炉炼铁技术工艺及应用分析[J].山西冶金,2023,46(6):98-100. [11] 周美洁,艾立群,洪陆阔,等.氢冶金基础研究和新工艺探索[J].材料导报,2023,37(13):168-173. [12] 李兰涛.高炉炼铁技术工艺及应用分析[J].天津冶金,2021(6):5-7+32. [13] 张颖,王莹,查松妍,等.钢铁行业氢冶金技术路线及发展现状[J].烧结球团,2023,48(4):8-15+23. [14] 苏亚红.我国钢铁行业氢冶金发展现状及建议[N].中国冶金报,2021-09-15(001). [15] ERSHOV Y L, SHAKUROV A G,PARSHIN V M,et al.Hydrogen era in domestic metallurgy:Report 1[J].Steel in Translation,2021,51(11):839-845. [16] ERSHOV Y L, SHAKUROV A G,PARSHIN V M,et al.Hydrogen era in russian metallurgy.Report No.2[J].Steel in Translation,2021,51(12):930-938. [17] 李峰,储满生,唐珏,等.氢气气基竖炉-电炉短流程环境影响分析[J].中国冶金,2021,31(9):104-109. [18] 有山達郎.鉄鋼における二酸化炭素削減長期目標達成に向けた技術展望[J].鉄と鋼,2019,105(6):567-586. [19] 吉立鹏.碳达峰碳中和下的钢铁企业冶金工艺优化技术研究及探讨[J].冶金管理,2022(1):178-180. [20] ZHANG X Y.A review on low carbon emissions projects of steel industry in the world[J].Journal of Cleaner Production,2021(306):127259. [21] USUI T,KAWABATA H,ONO-NAKAZATO H,et al.Fundamental experiments on the H2 gas injection into the lower part of a blast furnace shaft[J].ISIJ International,2002,42:S14-S18. [22] USUI T,KAWABATA H,ONO-NAKAZATO H,et al.Rate enhancement of reduction of sinter by the H2 injection into the lower part of the blast furnace shaft[C]// 3rd International Conference on Science and Technology of Ironmaking,Düsseldorf,Germany,2003:109-127. [23] YILMAZ C,WENFRLDTORF J,TUREK T.Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions[J].Journal of Cleaner Production,2017,154:488-501. [24] LYU Q,QIE Y N,LIU X J,et al.Effect of hydrogen addition on reduction behavior of iron oxides in gas-injection blast furnace[J].Thermochimica Acta,2017,648:79-90. [25] DE CASTRO J A,TAKANO C,YAGI J.A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel[J].Journal of Materials Research and Technology,2017,6(3):258-270. [26] HESSLING O,TOTTIE M,SICHEN D.Experimental study on hydrogen reduction of industrial fines in fluidized bed[J].Ironmaking & Steelmaking,2021,48(8):936-943. [27] SPREITZER D,SCHENK J.Reduction of iron oxides with hydrogen—a review[J].Steel Research International,2019,90(10):1900108. [28] PIOTROWSKI K,MONDAL K,LORETHOVA H,et al.Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process[J].International Journal of Hydrogen Energy,2005,30(15):1543-1554. [29] BONALDE A,HENRIQUEZ A,MANRIQUE M.Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent[J].Journal of Renewable & Sustainable Energy,2015,45(9):1255-1260. [30] ZUO H B,WANG C,DONG J J,et al.Reduction kinetics of iron oxide pellets with H2 and CO mixtures[J].International Journal of Minerals,Metallurgy,and Materials,2015,22(7):688-696. [31] WANG H,SOHN H Y.Reduction of magnetite concentrate particles by H2 + CO at 1673 K[J].ISIJ International,2015,55(3):706-708. [32] 柴锡翠,岳强,张钰洁,等.氢冶金竖炉还原域的数值模拟分析[J].钢铁,2022,57(4):138-147. [33] 吕建超.气基直接还原竖炉内还原过程的研究与分析[D].秦皇岛:燕山大学,2017. [34] 张建良.碳中和背景下的低碳炼铁与氢冶金[C]//第十三届中国钢铁年会论文集,北京,2022:49-50. [35] 张建良,王振阳,邢相栋,等.基于Energiron的球团矿气体还原动力学及其机理[J].中南大学学报,2015,46(1):41-48. [36] 刘征建,卢绍锋,王耀祖,等.基于数值模拟的不同氢碳比气基直接还原竖炉操作策略[J].钢铁,2023,58(10):42-50. [37] 白晨晨,师学峰,王明阳,等.气基竖炉直接还原数值模拟分析[J].钢铁,2024,59 (1):41-48. [38] 王成善,时艳文,李丹丹,等.氢还原竖炉的模拟分析[J].重庆大学学报,2016,39(4):57-66. [39] 刘西财,石恩泽,赵子川,等.氢基竖炉条件下制备不同金属化率球团研究[J].烧结球团,2022,47(1):58-64+126. [40] 田旭,周恒,黄健,等.数值模拟ψ(CO):ψ(H2)对直接还原竖炉反应过程的影响[J].钢铁,2024,59 (1):34-40+57. [41] BAHGAT M,KHEDR M H.Reduction kinetics,magnetic behavior and morphological changes during reduction of magnetite single crystal[J].Materials Science and Engineering B,2007,138(3):251-258. [42] ZHANG J L.Editorial for special issue on hydrogen metallurgy[J].International Journal of Minerals,Metallurgy and Materials,2022,29(10):1817-1819. [43] 李路叶.直接还原竖炉氢气利用率及炉内温度研究[D].秦皇岛:燕山大学,2016. [44] HASANBEIGI A,ARENS M,PRICE L.Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction:A technical review[J].Renewable and Sustainable Energy Reviews,2014,33:645-658. [45] 张福明,曹朝真,徐辉.气基竖炉直接还原技术的发展现状与展望[J].钢铁,2014,49(3):1-10. [46] 邱梓洋,王淇,王义松,等.典型的气基竖炉直接还原工艺[C]//第十一届全国能源与热工学术年会论文集,马鞍山,2021:604-610. [47] 姚同路,吴伟,杨勇,等.“双碳”目标下中国钢铁工业的低碳发展分析[J].钢铁研究学报,2022,34(6):9. [48] 郭汉杰,孙贯永.非焦煤炼铁工艺及装备的未来(2)——气基直接还原炼铁工艺及装备的前景研究(上)[J].冶金设备,2015(3):1-13. [49] 郭汉杰,孙贯永.非焦煤炼铁工艺及装备的未来(2)——气基直接还原炼铁工艺及装备的前景研究(下)[J].冶金设备,2015(4):1-9+33. [50] 王新东,赵志龙,李传民,等.基于富氢焦炉煤气零重整的氢冶金工程技术[J].钢铁,2023,58(5):11-19. [51] 宋赞.非高炉炼铁工艺发展现状[J].中国钢铁业,2020(10):44-46. [52] ARAKI K.CO2 ultimate reduction in steelmaking process(COURSE50 Project)[C]//2018日本铁钢协会春季大会论文集,东京,日本,2018:106-112. [53] 贺美乐,杨宁川,游香米,等.电弧炉采用直接还原铁炼钢工艺技术分析[J].特殊钢,2023(5):1-6. [54] 董跃,乔星星,刘改换,等.气基直接还原铁工艺还原气研究现状[J].能源与节能,2016(3):2-4. [55] 于国瀚,崔竞文,赵飞,等.氢基竖炉用耐火材料服役环境模拟及设计[J].硅酸盐学报,2023,51(3):619-627. [56] RUPRECHT B C,PIERCE R H H,HARVEY F A.A study of the effect of natural gas and of hydrogen upon various refractories[J].Journal of the American Ceramic Society,1934,17(1-12):185-193. [57] RANK J,MELZER D,WERSCHY M,et al.Behaviour of refractories in hydrogenous atmospheres[J].InterCeram:International Ceramic Review,2008,57(5):319-323. [58] TSO S T,PASK J A.Reaction of fused silica with hydrogen gas[J].Journal of the American Ceramic Society,2010,65(9):457-460. [59] TSO S T,PASK J A.Reaction of silicate glasses and mullite with hydrogen gas[J].Journal of the American Ceramic Society,1982,65(8):383-387. [60] YAKOVLEV S I,SHAKOVA N V,BIZINA A V,et al.Change in the phase composition and properties of high-alumina refractories after soaking them in hydrogen atmosphere[J].Refractories,1984,25(5-6):278-282. [61] SOKOV V N,SOKOVA S D,SOKOV V V.Heat-resistant corundum concrete reinforced with aluminum oxide fibers synthesized within a matrix during firing.Part 7.Study of reinforced corundum concrete resistance in a carbon-and hydrogen-containing atmosphere (endogas)[J].Refractories and Industrial Ceramics,2015,56(2):140-141. [62] JACOBSON N S,MYERS D,OPILA E,et al.Interactions of water vapor with oxides atelevated temperatures[J].Journal of Physics and Chemistry of Solids.2005,66:471-478. [63] 王战民,曹喜营,吴吉光,等.钢铁工业用耐火材料新技术进展[J].耐火材料,2023,57(5):377-385. [64] RANK J,MELZER D,ULLRICH B,et al.High-temperature heat-insulating materials in hydrogenous atmospheres[J].Ceramic Forum International,2008,85(10):373-380. [65] CROWLEY M S.Hydrogen-silica reactions in refractories[J].American Ceramic Society Bulletin,1967,46(7):679-682. [66] 杨杨.氢气气氛下耐火材料的性能[J].耐火与石灰,2009,34(6):29-32. [67] THOMAS P.HERBEL L.Hot Hydrogen Exposure Degradation of the Strength of Mullite[J].Journal of the American Ceramic Society,1998,81(4):910–916. [68] ZHANG Y J.Analysis of process parameters on energy utilization and environmental impact of hydrogen metallurgy[J].Journal of Cleaner Production,2022,361:132289-132292. [69] SHI Y.Improving hydrogen-rich gas-based shaft furnace direct reduction of fired hematite pellets by modifying basicity[J].Powder Technology,2022,408:117782-117785. [70] KURUNOV I F.The direct production of iron and alternatives to the blast furnace in iron metallurgy for the 21st century[J].Metallurgist,2010,54(5-6):335-342. [71] QIU Z Y.A multi parameters evaluation on exergy for hydrogen metallurgy[J].Energy,2023,281:128279-128283. [72] 李少飞.Al2O3-SiO2/CaO系耐火原料高温H2抗腐蚀研究[D].武汉:武汉科技大学,2023. [73] LI S F,GU H Z,HUANG A,et al.Thermodynamic analysis and experimental verification of the direct reduction of iron ores with hydrogen at elevated temperature[J].Journal of Materials Science,2022,57 (43):20419-20434. [74] LI S F,ZHANG H J,ZOU Y S,et al.Microstructural evolution during H2 corrosion of Al2O3-SiO2 based refractory aggregates[J].Ceramics International,2023,49 (17):27788-27795. [75] LI S F,CHEN D,GU H Z,et al.Investigation on application prospect of refractories for hydrogen metallurgy:The enlightenment from the reaction between commercial brown corundum and hydrogen[J].Materials,2022,15 (19):7022. [76] 徐平坤.发展气基竖炉-电炉工艺意义及用耐材探讨[J].工业炉,2023,45(4):25-29. [77] 秦红彬,金锋,唐世明,等.二铝酸钙加入量对刚玉浇注料性能的影响[J].耐火材料,2023,57(3):189-193. |