[1] |
李红霞, 刘国齐, 杨彬, 等. 连铸用功能耐火材料的发展[J]. 耐火材料, 2001, 35(1):45-49.
|
[2] |
KOJOLA N, EKEROT S, ANDERSSON M, et al. Pilot plant study of nozzle clogging mechanisms during casting of REM treated stainless steels[J]. Ironmaking & Steelmaking, 2011, 38(1):1-11.
|
[3] |
SUN M K, JUNG I H, LEE H G. Morphology and chemistry of oxide inclusions after Al and Ti complex deoxidation[J]. Metals & Materials International, 2008, 14(6):791.
|
[4] |
BASU S, CHOUDHARY S K, GIRASE N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel[J]. ISIJ International, 2004, 44(10):1653-1660.
DOI
URL
|
[5] |
ZHANG L F, WANG Y F, ZUO X J. Flow transport and inclusion motion in steel continuous-casting mold under submerged entry nozzle clogging condition[J]. Metallurgical and Materials Transactions B, 2008, 39(4):534-550.
DOI
URL
|
[6] |
VERMEULEN Y, COLETTI B, WOLLANTS P, et al. Clogging in submerged entry nozzles.Steel research[J]. 2000, 71(10):391-395.
|
[7] |
RACKERS K, THOMAS B G. Clogging in continuous casting nozzles[C]//78th Steelmaking Conference Proceedings,Nashville,US, 1995:723-734.
|
[8] |
吴苏州, 张炯明. 连铸浸入式水口结瘤现象的研究现状及发展[J]. 钢铁研究学报, 2007, 19(12):1-4.
|
[9] |
王睿之, 杨健, 职建军, 等. 连铸中间包上水口及浸入式水口结瘤物分析[J]. 宝钢技术, 2012 (5):13-16.
|
[10] |
WANG Y, SRIDHAR S, VALDEZ M. Formation of CaS on Al2O3-CaO inclusions during solidification of steels[J]. Metallurgical & Materials Transactions B, 2002, 33(4):625-632.
|
[11] |
乔焕山, 王莉, 陈玉鑫, 等. 浅析连铸铝镇静钢水口结瘤问题[C]//第十八届(2014年)全国炼钢学术会议论文集,西安, 2014:313-320.
|
[12] |
DEKKERS R, BLANPAIN B, WOLLANTS P, et al. A morphological comparison between inclusions in aluminium killed steels and deposits in submerged entry nozzle[J]. Steel Research International, 2003, 74(6):351-355.
DOI
URL
|
[13] |
TEHOVNIK F, BURJA J, ARH B, et al. Submerged entry nozzle clogging during continuous casting of Al-killed steel[J]. Metallurgy, 2015, 54(2):371-374.
|
[14] |
SAMBASIVAM R. Clogging resistant submerged entry nozzle design through mathematical modelling[J]. Ironmaking & Steelmaking, 2006, 33(6):439-453.
|
[15] |
赵定国, 李新, 王书桓, 等. 钢水中夹杂物与耐火材料的反应吸附行为[J]. 钢铁, 2016, 51(6):47-52.
|
[16] |
UEMURA K I, TAKAHASHI M, KOYAMA S, et al. Filtration mechanism of non-metallic inclusions in steel by ceramic loop filter[J]. ISIJ International, 1992, 32(1):150-156.
DOI
URL
|
[17] |
NADIF M, LEHMANN J, BURTY M, et al. Control of steel reoxidation and cc nozzle clogging:an overview[J]. Revue de Métallurgie, 2007, 104(10):493-500.
DOI
URL
|
[18] |
DENG Z Y, ZHU M Y, ZHONG B J, et al. Attachment of liquid calcium aluminate inclusions on inner wall of submerged entry nozzle during continuous casting of calcium-treated steel[J]. ISIJ International, 2014, 54(12):2813-2820.
DOI
URL
|
[19] |
TSUJINO R, TANAKA A, IMAMURA A, et al. Mechanism of deposition of inclusion and metal in ZrO2-CaO-C immersion nozzle of continuous casting[J]. ISIJ International, 1994, 34(11):853-858.
DOI
URL
|
[20] |
YANG B, LI H X, LIU G Q, et al. Study on anti-clogging SEN for special alloy steel continuous casting[C]//Proc of UNITECR’05,Orlando,US, 2005:758-761.
|
[21] |
VERMEULEN Y, COLETTI B, BLANPAIN B, et al. Material evaluation to prevent nozzle clogging during continuous casting of al killed steels[J]. ISIJ International, 2002, 42(11):1234-1240.
DOI
URL
|
[22] |
PRASAD B, SAHU J K, TIWARI J N. Design and development of anti-clogging nozzles for casting of aluminium killed steel[C]//Proc of UNITECR’07,Dresden,German, 2007:208-211.
|
[23] |
加知岳志, 高橋成彰, 山内智玲. 連続鋳造用浸漬ノズルにおける難付着材質の開発[J]. 耐火物, 2018, 70(6):269-275.
|
[24] |
SVENSSON J K S, MEMARPOUR A, EKEROT S, et al .Studies of new coating materials to prevent clogging of submerged entry nozzle (sen) during continuous casting of al killed low carbon steels[J]. Ironmaking & Steelmaking, 2017, 44(2):117-127.
|
[25] |
TUTTLE R B, SMITH J D, PEASLEE K D. Casting simulation of calcium titanate and calcium zirconate nozzles for continuous casting of aluminum-killed steels[J]. Metallurgical and Materials Transactions B, 2007, 38(1):101-108.
DOI
URL
|
[26] |
TSUKAGUCHI Y, HAYASHI H, KURIMOTO H, et al. Development of swirling-flow submerged entry nozzles for slab casting[J]. ISIJ International, 2010, 50(5):721-729.
DOI
URL
|
[27] |
苏志坚, 李德伟, 丸川雄净, 等. 电磁旋流水口在钢圆坯连铸中的作用[J]. 连铸, 2011(增刊):183-188.
|
[28] |
OSAMU N, SHINSUKE I, MASANORI O. Water model simulation of “mogul-lined” submerged entry nozzle. Taikabutsu Overseas, 2004, 24(3):194-197.
|
[29] |
YANG Y, JÖNSSON P G, ERSSON M, et al. Inclusion behavior under a swirl flow in a submerged entry nozzle and mold[J]. Steel Research International, 2015, 86(4):341-360.
DOI
URL
|
[30] |
YU J K, YANG X, LIU Z Y, et al. Anti-clogging of submerged entry nozzle through control of electrical characteristics[J]. Ceramics International, 2017, 43(15):13025-13029.
DOI
URL
|
[31] |
CAO X, JIE Y, WANG N, et al. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science[J]. Advanced Energy Materials, 2016, 6(23):1600665.
DOI
URL
|
[32] |
LOWELL J, TRUSCOTT W S. Triboelectrification of identical insulators Ⅱ:Theory and further experiments[J]. Journal of Physics D:Applied Physics, 1986, 19(7):1281-1298.
DOI
URL
|
[33] |
陈肇友, 张欣, 杨丁熬, 等. 含碳耐火材料的电化学侵蚀[J]. 硅酸盐学报, 1991(5):442-447.
|
[34] |
PAIK Y H, YOON W J, SHIN H C. Static electrification of solid oxide in liquid metal and electrical double layer at the interface[J]. Journal of Colloid Interface Science, 2004, 269(2):354-357.
DOI
URL
|
[35] |
HOU X H, YU J K, SHENG M K, et al. Influencing factors to the friction charging in water delivery metal pipeline[J]. Journal of Electrostatics, 2016, 82:7-10.
DOI
URL
|
[36] |
ZHU S X, LIU L, TAKAHASHI S. Flow electrification of insulated liquid in metal pipes[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6):1115-1120.
DOI
URL
|
[37] |
田强, 周绍骑, 刘凯, 等. 流速对管输油品静电的影响[J]. 油气储运, 2013, 32(2):203-206+222.
|
[38] |
YANG X, YU J K, LIU Z Y, et al. The charged characteristics of the submerged entry nozzle used for continuous casting[J]. Ceramics International, 2017, 43(2):2881-2883.
DOI
URL
|
[39] |
HEIKKINEN E P, MATTILA R, KOKKONEN T M T, et al. The chemical wear of the SEN-slagline in the continuous casting of stainless steels[C]//85th Steelmaking Conference,Nashville,US, 2002:419-428.
|
[40] |
LEE Y M, YIN H. Zirconia graphite wear and steel inclusions [C]//49th Annual Conference of Metallurgists,Vancouver,Canada, 2010:221-230.
|
[41] |
LI X M, TIAN H M, SHAO J Y, et al. Decreasing the saturated contact angle in electrowetting-on-dielectrics by controlling the charge trapping at liquid-solid interfaces[J]. Advanced Functional Materials, 2016, 26(18):2994-3002.
DOI
URL
|
[42] |
KIM J H, LEE J M, SHIN H C, et al. Separation of oxide inclusions from liquid metal in an applied electrostatic field[J]. Metals and Materials International, 2003, 9(6):593-597.
DOI
URL
|
[43] |
DAI W B, YU J K, DU C M, et al. Refinement of inclusions in molten steel by electric current pulse[J]. Materials Science and Technology, 2015, 31(13):1555-1559.
DOI
URL
|
[44] |
DAI W B, ZHOU X L, YANG X, et al. Formation of dense inclusion buildup on submerged entry nozzle by electric current pulse[J]. Acta Metallurgica Sinica(English Letters), 2016, 29(5):500-504.
|
[45] |
MIKI Y, KITAOKA H, SAKURAYA T, et al. Mechanism for separating inclusions from molten steel stirred with a rotating electro-magnetic field[J]. ISIJ International, 1992, 32(1):142-149.
DOI
URL
|
[46] |
SASAI K. Direct measurement of agglomeration force exerted between alumina particles in molten steel[J]. ISIJ International. 2014, 54(12):2780-2789.
DOI
URL
|
[47] |
MATSUSAKA S, GHADIRI M, MASUDA H. Electrification of an elastic sphere by repeated impacts on a metal plate[J]. Journal of Physics D:Applied Physics, 2000, 33(18):2311-2319.
DOI
URL
|