Refractories ›› 2021, Vol. 55 ›› Issue (3): 244-250.DOI: 10.3969/j.issn.1001-1935.2021.03.015
Previous Articles Next Articles
Cao Yunbo1)(), Liang Feng1)(
), Wang Sen1), He Jiangfeng1), Wang Xiaohan1), Hao Xian2), Zhang Haijun1)
Received:
2020-07-31
Online:
2021-06-15
Published:
2021-06-24
Contact:
Liang Feng
曹云波1)(), 梁峰1)(
), 王森1), 何江锋1), 王晓函1), 郝娴2), 张海军1)
通讯作者:
梁峰
作者简介:
曹云波:男,1995年生,硕士研究生。E-mail: 850514330@qq.com
基金资助:
CLC Number:
Cao Yunbo, Liang Feng, Wang Sen, He Jiangfeng, Wang Xiaohan, Hao Xian, Zhang Haijun. Preparation of TiN nanomaterials and their photothermal conversion applications[J]. Refractories, 2021, 55(3): 244-250.
曹云波, 梁峰, 王森, 何江锋, 王晓函, 郝娴, 张海军. 氮化钛纳米材料制备及其光热转换应用的研究进展[J]. 耐火材料, 2021, 55(3): 244-250.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.nhcl.cn/EN/10.3969/j.issn.1001-1935.2021.03.015
[1] |
BRONGERSMA M L, HALAS N J, NORDLANDER P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 2015,10(1):25-34.
DOI URL |
[2] |
DENG Z, ZHOU J, MIAO L, et al. The emergence of solar thermal utilization:solar-driven steam generation[J]. Journal of Materials Chemistry A, 2017,5(17):7691-7709.
DOI URL |
[3] |
HOGAN N J, URBAN A S, AYALA-OROZC O C, et al. Nanoparticles heat through light localization[J]. Nano Letters, 2014,14(8):4640-4645.
DOI URL |
[4] |
TAO P, NI G, SONG C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018,3(12):1031-1041.
DOI URL |
[5] |
SHIN D, KANG G, GUPTA P, et al. Thermoplasmonic and photothermal metamaterials for solar energy applications[J]. Advanced Optical Materials, 2018,6(18):1800317-1800317.
DOI URL |
[6] |
LIANG J, LIU H, Z YU J Y, et al. Plasmon-enhanced solar vapor generation[J]. Nanophotonics, 2019,8(5):771-786.
DOI URL |
[7] | 李欣远, 纪穆为, 王虹智, 等. 近红外光热转换纳米晶研究进展[J]. 中国光学, 2017,10(5):541-554. |
[8] |
ASLAM U, RAO V G, CHAVEZ S, et al. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures[J]. Nature Catalysis, 2018,1(9):656-665.
DOI URL |
[9] |
KIM S, KIM J M, PARK J E, et al. Nonnoble-metal-based plasmonic nanomaterials:recent advances and future perspectives[J]. Advanced Materials, 2018,30(42):1704528-1704528.
DOI URL |
[10] | 王兆洁, 余诺, 孟周琪, 等. 半导体光热转换纳米材料的研究进展[J]. 中国材料进展, 2017,36(12):921-928. |
[11] |
GULER U, NAIK G V, BOLTASSEVA A, et al. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications[J]. Applied Physics B, 2012,107(2):285-291.
DOI URL |
[12] |
GULER U, SHALAEV V M, BOLTASSEVA A. Nanoparticle plasmonics:going practical with transition metal nitrides[J]. Materials Today, 2015,18(4):227-237.
DOI URL |
[13] |
WANG H C, CHEN Q, WEN L, et al. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application[J]. Photonics Research, 2015,3(6):329-334.
DOI URL |
[14] |
PATSALAS P, KALFAGIANNIS N, KASSAVETIS S. Optical properties and plasmonic performance of titanium nitride[J]. Materials, 2015,8(6):3128-3154.
DOI URL |
[15] |
GULER U, SUSLOV S, KILDISHEV A V, et al. Colloidal plasmonic titanium nitride nanoparticles:properties and applications[J]. Nanophotonics, 2015,4(1):269-276.
DOI URL |
[16] | ALBERTO N, URCAN G, WANG Z X, et al. Broadband hot electron generation for solar energy conversion with plasmonic titanium nitride[C]// Optical Society of America,California,US, 2017: 6. |
[17] |
LALISSE A, TESSIER G, PLAIN J, et al. Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN,ZrN) compared with gold[J]. Scientific Reports, 2016,6(1):38647-38647.
DOI URL |
[18] | LIU F, LI Y D, YAO Y D, et al. Preparation of titanium nitride nanoparticles from a novel refluxing derived precursor[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2011,26(3):429-433. |
[19] |
YANG L S, YU H X, XU L Q, et al. Sulfur-assisted synjournal of nitride nanocrystals[J]. Dalton Transactions, 2010,39(11):2855-2860.
DOI URL |
[20] | 吴锋, 李志坚, 陈俊红, 等. 碳热还原氮化合成TiN的研究[J]. 耐火材料, 2006,40(2):89-91. |
[21] |
WU K H, JIANG Y, JIAO S Q, et al. Preparations of titanium nitride,titanium carbonitride and titanium carbide via a two-step carbothermic reduction method[J]. Journal of Solid State Chemistry, 2019,277:793-803.
DOI URL |
[22] |
SHI H, ZHANG H, CHEN Z, et al. Synjournal of TiN nanostructures by Mg-assisted nitriding TiO2 in N2 for lithium ion storage[J]. Chemical Engineering Journal, 2018,336:12-19.
DOI URL |
[23] |
FISCHER A, ANTONIETTI M, THOMAS A. Growth confined by the nitrogen source:synjournal of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride[J]. Advanced Materials, 2007,19(2):264-267.
DOI URL |
[24] |
DANKS A E, HALL S R, SCHNEPP Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synjournal[J]. Materials Horizons, 2016,3(2):91-112.
DOI URL |
[25] |
MOLINARI V, GIORDANO C, ANTONIETTI M, et al. Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers[J]. Journal of the American Chemical Society, 2014,136(5):1758-1761.
DOI URL |
[26] |
KIM I S, KUMTA P N. Hydrazide sol-gel synjournal of nanostructured titanium nitride:precursor chemistry and phase evolution[J]. Journal of Materials Chemistry, 2003,13(8):2028-2035.
DOI URL |
[27] | 黄仲, 焦成鹏, 张少伟, 等. 熔盐法合成非氧化物陶瓷粉体[J]. 耐火材料, 2015,49(3):232-237. |
[28] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and mxenes[J]. Journal of the American Chemical Society, 2019,141(11):4730-4737.
DOI URL |
[29] |
DING J, DENG C J, YUAN W J, et al. The synjournal of titanium nitride whiskers on the surface of graphite by molten salt media[J]. Ceramics International, 2013,39(3):2995-3000.
DOI URL |
[30] |
KAN X Q, DENG C J, YU C, et al. Synjournal,electrochemical and photoluminescence properties of titanium nitride nanoparticles[J]. Journal of Materials Science:Materials in Electronics, 2018,29(12):10624-10630.
DOI URL |
[31] | HU Y M, HUO K F, MA Y W, et al. Synjournal and field emission characterization of titanium nitride nanowires[J]. Journal of nanoscience & nanotechnology, 2007,7(8):2922-2926. |
[32] | SHINDE S L, ISHII S, DAO T D, et al. Enhanced solar light absorption and photoelectrochemical conversion using TiN nanoparticle-incorporated C3N4-C dot sheets[J]. ACS Applied Materials & Interfaces, 2018,10(3):2460-2468. |
[33] |
ANJANRYULU O, ISHII S, IMAI T, et al. Plasmon-mediated photothermal conversion by TiN nanocubes toward CO oxidation under solar light illumination[J]. RSC Advances, 2016,6(112):110566-110570.
DOI URL |
[34] |
ISHII S, SUGAVANESHWAR R P, NAGAO T. Titanium nitride nanoparticles as plasmonic solar heat transducers[J]. The Journal of Physical Chemistry C, 2016,120(4):2343-2348.
DOI URL |
[35] | KAUR M, ISHII S, SHINDE S L, et al. All-ceramic microfibrous solar steam cenerator:TiN plasmonic nanoparticle-loaded transparent microfibers[J]. ACS Sustainable Chemistry & Engineering, 2017,5(10):8523-8528. |
[36] |
KAUR M, ISHII S, SHINDE S L, et al. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride[J]. Advanced Sustainable Systems, 2019,3(2):1800112-1800112.
DOI URL |
[37] |
REN P, YANG X C. Synjournal and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation[J]. Solar RRL, 2018,2(4):1700233-1700233.
DOI URL |
[38] |
HOU X Y, TAO Y K, PANG Y Y, et al. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment[J]. International Journal of Cancer, 2018,143(12):3050-3060.
DOI URL |
[39] |
POPOV A A, TSELIKOV G, DUMAS N, et al. Laser-synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications[J]. Scientific Reports, 2019,9(1):7238-7248.
DOI URL |
[40] |
JIANG W Q, FU Q G, WEI H Y, et al. TiN nanoparticles:synjournal and application as near-infrared photothermal agents for cancer therapy[J]. Journal of Materials Science, 2019,54(7):5743-5756.
DOI URL |
[41] |
HAO Q, LI W, XU H, et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications[J]. Advanced Materials, 2018,30(10):1705421-1705421.
DOI URL |
[1] | Wu Qi, Wang Guangyang, Sun Yiran, Wang Xueqing, Sang Shaobai, Wang Qinghu, Li Yawei. Research progress of infrared radiation coatings for industrial kilns [J]. Refractories, 2022, 56(6): 543-547. |
[2] | Zou Xin, Chen Ping’an, Xu Guangping, Li Xiangcheng, Zhu Yingli, Zhu Boquan. Sintering densification of boron carbide materials and their application research progress [J]. Refractories, 2022, 56(5): 452-457. |
[3] | Tong Tianbai, Ren He, Wang Hengzhi, Liu Mei, Fan Zhaodong. Research progress on high temperature resistant Al2O3 aerogel insulation materials [J]. Refractories, 2022, 56(3): 272-276. |
[4] | Wang Lulu, Ma Beiyue, Liu Chunming. Research progress on preparation and performance optimization of porous cordierite ceramics [J]. Refractories, 2022, 56(1): 82-87. |
[5] | Wang Lulu, Ma Beiyue, Liu Chunming, Tian Jialong, Yu Jingkun. Research progress on performance optimization of porous mullite [J]. Refractories, 2021, 55(6): 549-552. |
[6] | Yu Zhi, Li Miao, Gao Jinxing, Xu Enxia. Research and application progress of TiO2 in refractories [J]. Refractories, 2021, 55(5): 390-394. |
[7] | Zan Wenyu, Ma Beiyue. New progress in preparation of high purity SiC micropowder [J]. Refractories, 2021, 55(2): 161-168. |
[8] | Ma Beiyue, Zhang Yuzhong, Gao Zhi, Zhang Shuhao. Research progress of dense magnesia and porous magnesia materials [J]. Refractories, 2021, 55(2): 169-173. |
[9] | Ma Beiyue, Mu Xin, Gao Zhi, Liu Yuyang, Ma Pengcheng, Ren Xinming. Research progress of thermal shock resistance of low-carbon magnesia carbon refractories [J]. Refractories, 2021, 55(2): 174-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||