Refractories ›› 2022, Vol. 56 ›› Issue (3): 272-276.DOI: 10.3969/j.issn.1001-1935.2022.03.022
Tong Tianbai(), Ren He, Wang Hengzhi, Liu Mei, Fan Zhaodong(
)
Received:
2021-09-23
Online:
2022-06-15
Published:
2022-06-24
Contact:
Fan Zhaodong
通讯作者:
范召东
作者简介:
佟天白:男,1996年生,硕士研究生。E-mail: tongtianbai@tju.edu.cn
CLC Number:
Tong Tianbai, Ren He, Wang Hengzhi, Liu Mei, Fan Zhaodong. Research progress on high temperature resistant Al2O3 aerogel insulation materials[J]. Refractories, 2022, 56(3): 272-276.
佟天白, 任河, 王恒芝, 刘梅, 范召东. 耐高温Al2O3气凝胶隔热材料的研究进展[J]. 耐火材料, 2022, 56(3): 272-276.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.nhcl.cn/EN/10.3969/j.issn.1001-1935.2022.03.022
前驱体 | 主要成果 | 参考文献 |
---|---|---|
异丙醇铝 | 室温下Al2O3气凝胶比表面积达377 m2·g-1 | [ |
AlCl3·6H2O | 掺杂聚乙烯醇可有效降低因干燥带来的凝胶收缩 | [ |
仲丁醇铝 | Al2O3气凝胶800 ℃时比表面积达301 m2·g-1,400 ℃时热导率为0.065 W·m-1·K-1 | [ |
仲丁醇铝 | Al2O3气凝胶室温和1 200 ℃下比表面积分别达447和73 m2·g-1 | [ |
仲丁醇铝 | Al2O3气凝胶在30、400、800 ℃下热导率分别为0.029、0.098、0.295 W·m-1·K-1 | [ |
仲丁醇铝 | 利用六甲基二硅胺烷超临界修饰制备Al2O3气凝胶,在1 200 ℃下比表面积达280 m2·g-1 | [ |
前驱体 | 主要成果 | 参考文献 |
---|---|---|
异丙醇铝 | 室温下Al2O3气凝胶比表面积达377 m2·g-1 | [ |
AlCl3·6H2O | 掺杂聚乙烯醇可有效降低因干燥带来的凝胶收缩 | [ |
仲丁醇铝 | Al2O3气凝胶800 ℃时比表面积达301 m2·g-1,400 ℃时热导率为0.065 W·m-1·K-1 | [ |
仲丁醇铝 | Al2O3气凝胶室温和1 200 ℃下比表面积分别达447和73 m2·g-1 | [ |
仲丁醇铝 | Al2O3气凝胶在30、400、800 ℃下热导率分别为0.029、0.098、0.295 W·m-1·K-1 | [ |
仲丁醇铝 | 利用六甲基二硅胺烷超临界修饰制备Al2O3气凝胶,在1 200 ℃下比表面积达280 m2·g-1 | [ |
[1] | 姜贵庆, 俞继军. 长时间气动加热飞行器的隔热机理[J]. 宇航材料工艺, 2006, 36(1):27-29. |
[2] | 王小路, 黄晋, 张友寿, 等. 耐火保温材料现状及发展[J]. 耐火材料, 2016, 50(1):75-80. |
[3] | 田响宇, 韩银龙, 周粮, 等. 重复使用对纤维增强SiO2气凝胶材料隔热性能的影响[J]. 耐火材料, 2021, 55(2):116-120. |
[4] | 孙小飞, 王海梅, 王刚, 等. SiO2气凝胶-玻璃纤维复合隔热材料中玻璃纤维分散工艺研究[J]. 耐火材料, 2019, 53(2):81-85. |
[5] | KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211):741. |
[6] | 孔勇, 沈晓冬, 崔升. 气凝胶纳米材料[J]. 中国材料进展, 2016, 35(8):569-576+568. |
[7] |
MIZUSHIMA Y, HORI M. Properties of alumina aerogels prepared under different conditions[J]. Journal of Non-Crystalline Solids, 1994, 167(1-2):1-8.
DOI URL |
[8] | 高庆福, 张长瑞, 冯坚, 等. 氧化铝气凝胶制备工艺研究进展[C]// 2008全国功能材料科技与产业高层论坛论文集,天津, 2008:660-663. |
[9] |
BULENT E. Alumina gels that form porous transparent Al2O3[J]. Journal of Materials Science, 1975, 10(11):1856-1860.
DOI URL |
[10] | 高庆福. 纳米多孔SiO2、Al2O3气凝胶及其高效隔热复合材料研究[D]. 长沙: 国防科学技术大学, 2009. |
[11] |
POCO J F, SATCHER J H, HRUBESH L W. Synthesis of high porosity,monolithic alumina aerogels[J]. Journal of Non-Crystalline Solids, 2001, 285(1):57-63.
DOI URL |
[12] |
ZU G Q, SHEN J, WEI X Q, et al. Preparation and characterization of monolithic alumina aerogels[J]. Journal of Non-crystalline Solids, 2011, 357(15):2903-2906.
DOI URL |
[13] |
PIERRE A C, BEGAG R, PAJONK G. Structure and texture of alumina aerogel monoliths made by complexation with ethyl acetoacetate[J]. Journal of Materials Science, 1999, 34(20):4937-4944.
DOI URL |
[14] | 余煜玺, 马锐, 王贯春, 等. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12):136-142. |
[15] | GAO Q F, ZHANG C R, FENG J, et al. Preparation of low density,monolithic alumina aerogels[J]. Chinese Journal of Inorganic Chemistry, 2008, 24(9):1456-1460. |
[16] |
ZU G, SHEN J, ZOU L, et al. Nanoengineering super heat-resistant,strong alumina aerogels[J]. Chemistry of Materials, 2013, 25(23):4757-4764.
DOI URL |
[17] |
GASH A E, TILLOTSON T M, SATCHER J H, et al. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors[J]. Journal of Non-crystalline Solids, 2001, 285(1):22-28.
DOI URL |
[18] | 周洁洁, 陈晓红, 胡子君, 等. 热处理对块状氧化铝气凝胶微观结构的影响[J]. 宇航材料工艺, 2010, 40(2):51-54. |
[19] |
BAUMANN T F, GASH A E, CHINN S C, et al. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors[J]. Chemistry of Materials, 2005, 17(2):395-401.
DOI URL |
[20] | 胡子君, 周洁洁, 陈晓红, 等. 氧化铝气凝胶的研究进展[J]. 硅酸盐通报, 2009, 28(5):1002-1007. |
[21] |
HORIUCHI T, OSAKI T, SUGIYAMA T, et al. Maintenance of large surface area of alumina heated at elevated temperatures above 1300 ℃ by preparing silica-containing pseudoboehmite aerogel[J]. Journal of Non-crystalline Solids, 2001, 291(3):187-198.
DOI URL |
[22] | 高庆福, 张长瑞, 冯坚, 等. 氧化铝气凝胶复合材料的制备与隔热性能[J]. 国防科技大学学报, 2008(4):39-42. |
[23] |
LERMONTOV S A, MALKOVA A N, YURKOVA L, et al. Diethyl and methyl-tert-buthyl ethers as new solvents for aerogels preparation[J]. Materials Letters, 2014, 116(1):116-119.
DOI URL |
[24] | 姜凯, 白臻祖, 黄珊, 等. 气凝胶的研究进展[J]. 云南化工, 2020, 47(6):1-5. |
[25] |
WANG P, EMMERLING A, TAPPERT W, et al. High-temperature and low-temperature supercritical drying of aerogels-structural investigations with saxs[J]. J Appl Crystallogr, 1991, 24(5):777-780.
DOI URL |
[26] |
WALENDZIEWSKI J, STOLARSKI M, PNIAK B, et al. Synthesis and properties of alumina aerogels[J]. Reaction Kinetics and Catalysis Letters, 1999, 66(1):71-77.
DOI URL |
[27] |
ZHANG X K, RUI Z, JIN S L, et al. Synthesis of alumina aerogels from AlCl3·6H2O with an aid of acetoacetic-grafted polyvinyl alcohol[J]. Journal of Sol-Gel Science and Technology, 2018, 87(2):486-495.
DOI URL |
[28] | REN L L, CUI S M, CAO F C, et al. An easy way to prepare monolithic inorganic oxide aerogels[J]. Angewandte Chemie, 2014, 53(38):10147-10149. |
[29] | WANG H M, SUN X F, LI H X. Study on glass fiber dispersion technology in SiO2 aerogel-glass fiber composite insulation materials[J]. China’s Refractories, 2019, 28(1):32-36. |
[30] |
WU L N, HUANG Y D, WANG Z J, et al. Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying[J]. Applied Surface Science, 2010, 256(20):5973-5977.
DOI URL |
[31] | 张耀明, 李巨白. 玻璃纤维与矿物棉全书[M]. 北京: 化学工业出版社, 2001:21-23. |
[32] | 孙晶晶, 胡子君, 吴文军, 等. 氧化铝气凝胶复合高温隔热瓦的制备及性能[J]. 宇航材料工艺, 2017, 47(3):33-36,41. |
[33] |
OSAKI T, MORI T. Characterization of nickel-alumina aerogels with high thermal stability[J]. Journal of Non-crystalline Solids, 2009, 355(31):1590-1596.
DOI URL |
[34] | 周洁洁, 陈晓红, 宋怀河, 等. 氧化钇掺杂对Al2O3块状气凝胶结构与性能的影响[J]. 硅酸盐通报, 2010, 29(5):1002-1006. |
[35] |
AL-YASSIR N, MAO R. Thermal stability of alumina aerogel doped with yttrium oxide,used as a catalyst support for the thermocatalytic cracking (TCC) process: An investigation of its textural and structural properties[J]. Applied Catalysis A General, 2007, 317(2):275-283.
DOI URL |
[36] |
JOHNSON M. Surface area stability of aluminas[J]. Journal of Catalysis, 1990, 123(1):245-259.
DOI URL |
[37] |
BEGUIN B, GARBOWSKI E, PRIMET M. Stabilization of alumina toward thermal sintering by silicon addition[J]. Journal of Catalysis, 1991, 127(2):595-604.
DOI URL |
[38] |
OSAKI T, NAGASHIMA K, WATARI K, et al. Silica-doped alumina cryogels with high thermal stability[J]. Journal of Non-crystalline Solids, 2007, 353(24-25):2436-2442.
DOI URL |
[1] | Ren He, Tong Tianbai, Liu Mei, Wang Lina, Fan Zhaodong. Temperature resistance of alumina aerogels [J]. Refractories, 2024, 58(4): 297-301. |
[2] | Li Xin, Cao Yueqi, Zhang Qiang, Guo Anran. Preparation of mullite fiber based porous ceramics via photocuring 3D printing [J]. Refractories, 2023, 57(6): 461-466. |
[3] | Li Xin, Li Hao-ming, Zhang Qiang, Cao Yueqi, Liu Xing’er, Guo Anran. Preparation of porous aluminum borate ceramics by gel casting-solid state reaction method [J]. Refractories, 2023, 57(4): 277-280. |
[4] | Ma Junhua, Luo Zhongtao, Li Ye, Jia Quanli, Mu Yuandong, Chen Liugang. Corrosion of Li(NixCoyMnz)O2 cathode materials to KAlSi2O6 prepared via sol-gel method [J]. Refractories, 2023, 57(4): 305-309. |
[5] | Gao Chaochao, Xu Yanheng, Liu Mingyong, Wei Haichao, Zhou Ruxian, Liu Qiyun, Wang Rui, Min Xin, Huang Zhaohui. Preparation of insulation materials from waste mullite-cordierite kiln furniture [J]. Refractories, 2023, 57(4): 343-346. |
[6] | Wu Qi, Wang Guangyang, Sun Yiran, Wang Xueqing, Sang Shaobai, Wang Qinghu, Li Yawei. Research progress of infrared radiation coatings for industrial kilns [J]. Refractories, 2022, 56(6): 543-547. |
[7] | Zou Xin, Chen Ping’an, Xu Guangping, Li Xiangcheng, Zhu Yingli, Zhu Boquan. Sintering densification of boron carbide materials and their application research progress [J]. Refractories, 2022, 56(5): 452-457. |
[8] | Wang Lulu, Ma Beiyue, Liu Chunming. Research progress on preparation and performance optimization of porous cordierite ceramics [J]. Refractories, 2022, 56(1): 82-87. |
[9] | Wang Lulu, Ma Beiyue, Liu Chunming, Tian Jialong, Yu Jingkun. Research progress on performance optimization of porous mullite [J]. Refractories, 2021, 55(6): 549-552. |
[10] | Yu Zhi, Li Miao, Gao Jinxing, Xu Enxia. Research and application progress of TiO2 in refractories [J]. Refractories, 2021, 55(5): 390-394. |
[11] | Qin Xing, Zhang Jinhua, Wang Jingran, Ni Yue’e, Ke Changming. Preparation of titanium nitride powders by citrate complex precursor method [J]. Refractories, 2021, 55(3): 198-202. |
[12] | Cao Yunbo, Liang Feng, Wang Sen, He Jiangfeng, Wang Xiaohan, Hao Xian, Zhang Haijun. Preparation of TiN nanomaterials and their photothermal conversion applications [J]. Refractories, 2021, 55(3): 244-250. |
[13] | Tian Xiangyu, Han Yinlong, Zhou Liang, Wu Qiong, Shang Lei, Gao Qingfu, Zhang Bo. Effect of repeated usage on thermal insulation properties of fiber reinforced SiO2 aerogel materials [J]. Refractories, 2021, 55(2): 116-120. |
[14] | Zan Wenyu, Ma Beiyue. New progress in preparation of high purity SiC micropowder [J]. Refractories, 2021, 55(2): 161-168. |
[15] | Ma Beiyue, Zhang Yuzhong, Gao Zhi, Zhang Shuhao. Research progress of dense magnesia and porous magnesia materials [J]. Refractories, 2021, 55(2): 169-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||